Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T13:09:51.788Z Has data issue: false hasContentIssue false

Where are the geometrically necessary dislocations accommodating small imprints?

Published online by Cambridge University Press:  31 January 2011

M. Rester*
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, A-8700 Leoben, Austria
C. Motz
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, A-8700 Leoben, Austria
R. Pippan
Affiliation:
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, A-8700 Leoben, Austria
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analyses of small indentations in copper single crystals exhibit only slight changes of the crystal orientation in the surroundings of the imprints. Far-reaching dislocations might be the reason for these small misorientation changes. Using EBSD and TEM technique, this work makes an attempt to visualize the far-propagating dislocations by introducing a twin boundary in the vicinity of small indentations. Because dislocations piled up at the twin boundary produce a misorientation gradient, the otherwise far-propagating dislocations can be detected.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gao, H. and Huang, Y.: Geometrically necessary dislocation and size-dependent plasticity. Scr. Mater. 48, 113 (2003).CrossRefGoogle Scholar
2.Cottrell, A.H.: The Mechanical Properties of Matter (Wiley, New York, 1964).Google Scholar
3.Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1, 153 (1953).CrossRefGoogle Scholar
4.Ashby, M.F.: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399 (1970).CrossRefGoogle Scholar
5.Stelmashenko, N.A., Walls, M.G., Brown, L.M., and Milman, Y.V.: Microindentations on W and Mo oriented single crystals: An STM study. Acta Metall. Mater. 41, 2855 (1993).CrossRefGoogle Scholar
6.De Guzman, M.S., Neubauer, G., Flinn, P., and Nix, W.D.: Role of indentation depth on the measured hardness of materials, in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P.H., Weihs, T.P., Sanchez, J.E. Jr, and Borgesen, P. (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), p. 613.Google Scholar
7.Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W.: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42, 475 (1994).CrossRefGoogle Scholar
8.Ma, Q. and Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853 (1995).CrossRefGoogle Scholar
9.Nix, W.D. and Gao, H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).CrossRefGoogle Scholar
10.Rester, M., Motz, C., and Pippan, R.: Microstructural investigation of the volume beneath nanoindentations in copper. Acta Mater. 55, 6427 (2007).CrossRefGoogle Scholar
11.Rester, M., Motz, C., and Pippan, R.: Microstructural investigation of the deformation zone below nano-indents in copper, in Fundamentals of Nanoindentation and Nanotribology IV, edited by Le Bourhis, E., Morris, D.J., Oyen, M.L., Schwaiger, R., and Staedler, T. (Mater. Res. Soc. Symp. Proc. 1049, Warrendale, PA, 2008), AA0303.Google Scholar
12.Rester, M., Motz, C., and Pippan, R.: Indentation across size scales. A survey of indentation-induced plastic zones in copper {111} single crystals. Scr. Mater. 59, 742 (2008).CrossRefGoogle Scholar
13.Rester, M., Motz, C., and Pippan, R.: The deformation-induced zone below large and shallow nanoindentations: A comparative study using EBSD and TEM. Philos. Mag. Lett. 88, 879 (2008).CrossRefGoogle Scholar
14.Chiu, Y.L. and Ngan, A.H.W.: A TEM investigation on indentation plastic zones in Ni3Al(Cr,B) single crystals. Acta Mater. 50, 2677 (2002).CrossRefGoogle Scholar
15.Wo, P.C., Ngan, A.H.W., and Chiu, Y.L.: TEM measurement of nanoindentation plastic zones in Ni3Al. Scr. Mater. 55, 557 (2006).CrossRefGoogle Scholar
16.Wo, P.C., Ngan, A.H.W., and Chiu, Y.L.: Erratum to “TEM measurement of nanoindentation plastic zones in Ni3Al.” Scr. Mater. 56, 323 (2007).CrossRefGoogle Scholar
17.Minor, A.M., Asif, S.A.S., Shan, Z., Stach, E.A., Cyrankowski, E., Wyrobek, T.J., and Warren, O.L.: A new view of the onset of plasticity during the nanoindentation of aluminium. Nat. Mater. 5, 697 (2006).CrossRefGoogle ScholarPubMed
18.Gouldstone, A., Van Vliet, K.J., and Suresh, S.: Nanoindentation: Simulation of defect nucleation in a crystal. Nature 411, 656 (2001).CrossRefGoogle ScholarPubMed
19.Li, J., Van Vliet, K.J., Zhu, T., Yip, S., and Suresh, S.: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307 (2002).CrossRefGoogle ScholarPubMed
20.Zhu, T., Li, J., Van Vliet, K.J., Ogata, S., Yip, S., and Suresh, S.: Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper. J. Mech. Phys. Solids 52, 691 (2004).CrossRefGoogle Scholar
21.Hafok, M., Vorhauer, A., Keckes, J., and Pippan, R.: HPT-deformation of copper and nickel single crystals. Mater. Sci. Forum 503–504, 621 (2006).CrossRefGoogle Scholar
22.Balint, D.S., Deshpande, V.S., Needleman, A., and Van der Giessen, E.: Discrete dislocation plasticity analysis of the wedge indentation of films. J. Mech. Phys. Solids 54, 2281 (2006).CrossRefGoogle Scholar
23.Kreuzer, H.G.M. and Pippan, R.: Discrete dislocation simulation of nanoindentation: Indentation size effect and the influence of slip band orientation. Acta Mater. 55, 3229 (2007).CrossRefGoogle Scholar
24.Nicola, L., Bower, A.F., Kim, K-S., Needleman, A., and Van der Giessen, E.: Surface versus bulk nucleation of dislocations during contact. J. Mech. Phys. Solids 55, 1120 (2007).CrossRefGoogle Scholar