Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T22:09:04.519Z Has data issue: false hasContentIssue false

Wet Synthesis and Characterization of MSe (M = Cd, Hg) Nanocrystallites at Room Temperature

Published online by Cambridge University Press:  31 January 2011

Qing Yang
Affiliation:
Department of Chemistry and Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Kaibin Tang*
Affiliation:
Department of Chemistry and Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Chunrui Wang
Affiliation:
Department of Chemistry and Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Chunjuan Zhang
Affiliation:
Department of Chemistry and Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Yitai Qian*
Affiliation:
Department of Chemistry and Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Extract

Semiconductor selenides of MSe (M = Cd, Hg) nanocrystalline powders were synthesized through the reactions between metal chlorides and sodium selenosulfate in the ammoniacal aqueous solution at room temperature for 6–10 h. The samples were characterized by x-ray powder diffraction, transmission electron microscopy, electron diffraction, x-ray photoelectron spectroscopy, and elemental analysis. The average diameters of CdSe and HgSe nanocrystallites are 4 and 8 nm, respectively. The storage and an interesting phase transition under hydrothermal conditions have been presented. The absorption spectrum of the as-prepared samples exhibits obvious blue shift due to the size confinement.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Alivisatos, A.P., Science 271, 933 (1996); B.C. Hess, I.G. Okhrimenko, R.C.Davis, B.C. Stevens, Q.A. Schulzke, K.C. Wright, C.D. Bass, C.D. Evans, and S.L. Summers, Phys. Rev. Lett. 86, 3132 (2001).CrossRefGoogle Scholar
2.Bawendi, M.G., Steigerwald, M.L., and Brus, L.E., Annu. Rev. Phys. Chem. 41, 477 (1990).CrossRefGoogle Scholar
3.Roussignol, P., Ricard, D., Flytzanis, C., and Neuroth, N., Phys. Rev. Lett. 62, 312 (1989); N. Peyghambarian, B. Fluegel, D. Hulin, A. Migus, M. Joffre, A. Antonetti, S.W. Koch, and M. Lindberg, IEEE J. Quantum Electron. 25, 2516 (1989).CrossRefGoogle Scholar
4.Rogach, A.L., Harrison, M.T., Kershaw, S.V., Kornowski, A., Burt, M.G., Eychmuller, A., and Weller, H., Phys. Status Solidi B 224, 153 (2001).3.0.CO;2-3>CrossRefGoogle Scholar
5.Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc. 115, 8706 (1993).CrossRefGoogle Scholar
6.Cotton, F.A. and Wilkinson, G., Advanced Inorganic Chemistry, 3rd. ed. (Interscience, New York, 1972), p. 430.Google Scholar
7.Kitaev, G.A. and Terekhova, T.S., Zh. Neorg. Khim. 15, 48 (1970).Google Scholar
8.Bandaranayake, K.J., Wen, G.W., Lin, J.Y., Jing, H.X., and Sorensen, C.M., Appl. Phys. Lett. 67, 831 (1995).CrossRefGoogle Scholar
9.Wang, Y. and Herron, N., J. Phys. Chem. 95, 525 (1991); Y. Wang and N. Herron, J. Phys. Chem. 91, 257 (1987).CrossRefGoogle Scholar
10. J.E. Bowen-Katari, Colvin, V.L., and Alivisatos, A.P., J. Phys. Chem. 98, 4109 (1994).Google Scholar
11.Rajh, T., Micic, O.I., and Nozik, A.J., J. Phys. Chem. 97, 11999 (1993); D. Routkevitch, T. Bigioni, M. Moskovits, and J.M. Xu, J. Phys. Chem.100, 14037 (1996).CrossRefGoogle Scholar
12.Peng, X.G., Manna, L., Yang, W.D., Wickham, J., Scher, E., Kadavanich, A., and Alivisatos, A.P., Nature 404, 59 (2000).CrossRefGoogle Scholar
13.Borade, R.B., Zeolites 7, 398 (1987).CrossRefGoogle Scholar
14.Mastai, Y., Polsky, R., Koltypin, Y., Gedanken, A., and Hodes, G., J. Am. Chem. Soc. 121, 10047 (1999).CrossRefGoogle Scholar
15.Deng, Z.S., Cinquino, M., and Lawrence, M.F., J. Mater. Res. 6, 1293 (1991); J. Reisse, H. Francois, J. Vandercammen, O. Fabre, A. Kirsch-De Mesmaeker, C. Maerschalk, and J.L. Delplancke, Electrochim. Acta 39, 37 (1994).CrossRefGoogle Scholar
16.Zhu, J., Koltypin, Y., and Gedanken, A., Chem. Mater. 12, 73 (2000).CrossRefGoogle Scholar
17.Zhu, J., Aruna, S.T., Koltypin, Y., and Gedanken, A., Chem. Mater. 12, 143 (2000).CrossRefGoogle Scholar
18.Qiao, Z.P., Xie, Y., Xu, J.G., Zhu, Y.J., and Qian, Y.T., J. Colloid Interface Sci. 214, 459 (1999).CrossRefGoogle Scholar
19.Wang, W.Z., Geng, Y., Yan, P., Liu, F., Xie, Y., and Qian, Y.T., J. Am. Chem. Soc. 121, 4062 (1999); Y.D. Li, Z. Wang, Y. Ding, and Y.T. Qian, Inorg. Chem.38, 4737 (1999).CrossRefGoogle Scholar
20.Kitaev, G.A. and Khvorenkova, A.Zh., Russ. J. Appl. Chem. 71, 1325 (1998); G.A. Kitaev, G.M. Fofanov, T.S. Terekhova, T.P. Sokolova, N.M. Kondrat’eva, and N.A. Kodomskaya, Protsessy Rosta Krist. Plenok Poluprovodn., Tr. Simp., 2nd.351 (1970).Google Scholar
21.Trindade, T., O’Brien, P., Zhang, X., and Motevalli, M., J. Mater. Chem. 7, 1011 (1997).CrossRefGoogle Scholar
22.Yamamoto, O., Sasamoto, T., and Inagaki, M., J. Mater. Res. 13, 3394 (1998); R. Nayak, J. Galsworthy, P. Dobson, and J. Hutchison, J. Mater. Res. 13, 905 (1998); D.V. Talapin, S. Haubold, Rogach, A. Kornowski, M. Haase, and H. Weller, Phys. Chem. B 105, 2260 (2001).CrossRefGoogle Scholar
23.Skyllas-Kazacos, M. and Miller, B., J. Electrochem. Soc. 127, 2378 (1980).CrossRefGoogle Scholar
24.Pramanik, P. and Bhattacharza, B., Mater. Res. Bull. 24, 945 (1989) and references therein.CrossRefGoogle Scholar
25.Handbook of X-ray Photoelectron Spectroscope, edited by Wanger, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., and Muilenberg, G.E. (Perkin-Elmer, Physical Electronics Division, Norwalk, CT, 1979).Google Scholar
26.Gorer, S. and Hodes, G., J. Phys. Chem. 98, 5338 (1994).CrossRefGoogle Scholar
27.Malmsten, G., Thoren, I., Hogberg, S., Bergmark, J.E., and Karlsson, S.E., Phys. Ser. 3, 96 (1971); M. Shenasa, S. Sainkar, and D. Lichtman, J. Electron Spectrosc. Relat. Phenom. 40, 329 (1986).CrossRefGoogle Scholar