Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T23:05:39.687Z Has data issue: false hasContentIssue false

Waveguide refractometry as a probe of thin film optical uniformity

Published online by Cambridge University Press:  31 January 2011

B. G. Potter Jr.
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1349
D. Dimos
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1349
M. B. Sinclair
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185–1349
Get access

Abstract

Optical inhomogeneities through the thickness of a sol-gel-derived, spin-coated Pb(Zr,Ti)O3 (PZT) thin film have been evaluated using prism-coupled waveguide refractometry. Unusual waveguide coupling angle behavior has been treated using a multilayer model to describe the optical characteristics of the film. Waveguide refractometry measurements, performed after incremental reductions in film thickness, were used to develop a consistent model for optical inhomogeneity through the film thickness. Specifically, a thin film layer model, consisting of alternating layers of high and low refractive index material, was found to accurately predict irregularities in transverse-electric (TE) mode coupling angles exhibited by the film. This layer structure has a spatial periodicity that is consistent with the positions of the upper film surface at intermediate firings during film synthesis. The correlation emphasizes the impact of the multistep thin-film deposition approach on the optical characteristics of the resulting thin film.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Land, C. E., Thacher, P. D., and Haertling, G. H., in Applied Solid State Science, edited by Wolfe, R. (Academic Press, New York, 1974).Google Scholar
2.Dimos, D., Annu. Rev. Mater. Sci. 25, 273 (1995), and References therein.CrossRefGoogle Scholar
3.Wang, F., Li, K., Furman, E., and Haertling, G. H., Opt. Lett. 18, 1615 (1993).Google Scholar
4.Thomas, J. A. and Fainman, Y., Opt. Lett. 20, 1510 (1995).Google Scholar
5.Potter, B. G.,Jr., Sinclair, M. B., Dimos, D., Tuttle, B. A., and Schwartz, R. W., J. Non-Cryst. Solids 178, 69 (1994).Google Scholar
6.Potter, B. G.,Jr., Sinclair, M. B., and Dimos, D., Appl. Phys. Lett. 63, 2180 (1993).Google Scholar
7.Lefevre, M. J., Speck, J. S., Schwartz, R. W., Dimos, D., and Lockwood, S. J., J. Mater. Res. 11, 2076 (1996).Google Scholar
8.Schwartz, R. W., Bunker, B. C., Dimos, D., Assink, R. A., Tuttle, B. A., Tallant, D. R., and Weinstock, I. A., Int. Ferroelec. 2, 243 (1992).CrossRefGoogle Scholar
9.Sinclair, M. B., Dimos, D., Potter, B. G., Jr., and Schwartz, R. W., J. Am. Ceram. Soc. 78, 2027 (1995).Google Scholar
10.Amanuma, K., Hase, T., and Miyasak, Y., Appl. Phys. Lett. 65, 3140 (1994).Google Scholar
11. Unpublished results.Google Scholar
12.Trolier-McKinstry, , Ferroelectrics 65, 175 (1985).Google Scholar
13.Reitze, D. H., Haton, E., Ramesh, R., Etemad, S., Leaird, D. E., Sands, T., Karim, Z., and Tanguay, A. R., Jr., Appl. Phys. Lett. 63, 596 (1993).Google Scholar