Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T07:45:19.296Z Has data issue: false hasContentIssue false

Vortex dynamics during N–S and S–N transitions of Y–Ba–Cu–O superconductors under the effect of temperature gradient and thermal cycling

Published online by Cambridge University Press:  31 January 2011

I. Kirschner*
Affiliation:
Department for Low Temperature Physics, Eötvös University, H-1088 Budapest, Hungary
A. C. Bódi
Affiliation:
Institute of Experimental Physics, Kossuth University, H-4001 Debrecen, Hungary
R. Laiho
Affiliation:
Wihuri Physical Laboratory, University of Turku, FIN-20500 Turku, Finland
L. Lähderanta
Affiliation:
Wihuri Physical Laboratory, University of Turku, FIN-20500 Turku, Finland
*
a)Author to whom correspondence should be addressed at Eötvös University, Department of Low Temperature Physics, H-1088 Budapest, Puskin u. 5-7., Hungary; phone: (++36-1) 266-7929, fax: (++36-1) 266-0206.
Get access

Abstract

AC susceptibility of ac has been measured simultaneously in three different ranges of Y–Ba–Cu –O ceramic samples in the presence of a large and variable temperature gradient. The results obtained for normal-superconducting or superconducting-normal transitions under the effect of the one-dimensional nonequilibrium temperature distribution reveal the vortex motion to consist of not only conventional flux expulsion (or flux penetration), but flux exchange too, appearing between different ranges of samples and between samples and their close physical environment. The thermal cycles are shown to represent a supplementary heat treatment, increasing the homogeneity of the sample and decreasing the pinning, which accelerate the process of vortex motion.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.He, Z., Cheng, X., Sha, J., Su, Z. P., and Zhang, Q., Solid State Commun. 76, 671 (1990).Google Scholar
2.Gerber, A., Grenet, T., Cyrot, M., and Beille, J., Phys. Rev. Lett. 65, 3201 (1990).Google Scholar
3.Spahn, E. and Keck, K., Solid State Commun. 78, 69 (1991).Google Scholar
4.Crusellas, M. A., Fontcuberta, J., and Piòol, S., Phys. Rev. B 46, 14089 (1992).Google Scholar
5.Wan, Y. M., Hebboul, S. E., Harris, D. C., and Garland, J. C., Phys. Rev. Lett. 71, 157 (1993).Google Scholar
6.Mosqueira, J., Pomar, A., Diaz, A., Veira, J. A., and Vidal, F., Physica C 225, 34 (1994).Google Scholar
7.Suzuki, M., Phys. Rev. B 50, 6360 (1994).CrossRefGoogle Scholar
8.Bódi, A. C., Kirschner, I., and Leppävuori, S., Phys. Lett. A 158, 318 (1991).CrossRefGoogle Scholar
9.Gerber, A., Appl. Supercon. 1, 985 (1993).Google Scholar
10.Srivastava, P. K., Debely, P., Hintermann, H. E., Leeman, C., Weber, J., Caccivio, O., Martinoli, P., and Ott, H. R., Physica C 153–155, 1443 (1988).Google Scholar
11.Olsson, H. K. and Koch, R. H., Phys. Rev. Lett. 68, 2406 (1992).Google Scholar
12.Kobrin, P. H., Cheung, J. T., Ho, W. W., Glass, N., Lopez, J., and Gergis, I. S., Physica C 176, 121 (1991).Google Scholar
13.Olsson, H. K. and Koch, R. H., Physica C 185–189, 1847 (1991).Google Scholar
14.Shibauchi, T., Maeda, A., Kitano, H., Honda, T., and Uchinokura, K., Physica C 203, 315 (1992).Google Scholar
15.Mooren, J. T., Adriaanse, L. J., Brom, H. B., Chen, N. Y., van der Marel, D., Horbach, M. L., and van Saarloos, W., Phys. Rev. B 47, 14525 (1993).Google Scholar
16.Glass, N. E. and Hall, W. F., Phys. Rev. B 44, 4495 (1991).Google Scholar
17.Higgins, M. J. and Bhattacharya, S., Physica C 257, 232 (1996).Google Scholar
18.Kirschner, I., Leppävuori, S., Bódi, A. C., Uusimäki, A., and Dódony, I., Appl. Supercon. 1, 1720 (1993).Google Scholar
19.Kirschner, I., Bódi, A. C., Leppävuori, S., Uusimäki, A., Dódony, J., and Porjesz, T., Phys. Lett. A 178, 315 (1993).Google Scholar
20.Bódi, A. C., Kirschner, I., and Leppävuori, S., Z. Phys. B 97, 481 (1995).Google Scholar
21.Kirschner, I., Bódi, A. C., Laiho, R., and Lähderanta, E., Superlatt. Microstruct. 21, 315 (1997).Google Scholar
22.Bódi, A. C., Kirschner, I., Laiho, R., and Lähderanta, E., Physica C 258, 137 (1996).Google Scholar
23.Kirschner, I., Bódi, A. C., Laiho, R., and Lähderanta, E., Z. Phys. B 101, 535 (1996).Google Scholar
24.Bódi, A. C., Kirschner, I., Laiho, R., and Lähderanta, E., Solid State Commun. 98, 1049 (1996).Google Scholar
25.Kirschner, J. and Martinás, K., J. Low Temp. Phys. 14, 427 (1974).Google Scholar
26.Brandt, E. H., Act. Pass. Electr. Comp. 15, 193 (1993).Google Scholar
27.Marticon, J., Phys. Lett. 9, 289 (1964).Google Scholar