Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T16:56:03.411Z Has data issue: false hasContentIssue false

Visible-light responsive plasmonic Ag2O/Ag/g-C3N4 nanosheets with enhanced photocatalytic degradation of Rhodamine B

Published online by Cambridge University Press:  01 July 2016

Shurong Fu
Affiliation:
Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
Yiming He
Affiliation:
Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
Qi Wu
Affiliation:
Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
Ying Wu*
Affiliation:
Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
Tinghua Wu*
Affiliation:
Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
*
a) Address all correspondence to these authors. e-mail: [email protected]
b) e-mail: [email protected]
Get access

Abstract

Visible-light responsive plasmonic Ag2O/Ag/g-C3N4 nanosheets (NS) were successfully prepared by a simple and green photodeposition method. The obtained composites were characterized by XRD, Fourier transform infrared, transmission electron microscopy, UV-vis, and the photoluminescence (PL) results indicated that the Ag2O/Ag/g-C3N4 NS composites showed better photoabsorption performance than g-C3N4 due to the surface plasmon resonance effect of Ag nanoparticles. Meanwhile, the composite exhibited excellent photocatalytic activities, which was ∼3.8 and ∼3.0 times higher than those of bulk g-C3N4 and pure g-C3N4 NS, respectively. Moreover, the as-prepared composites showed a high structural stability in the photodegradation of Rhodamine B. A possible photocatalytic and charge separation mechanism was suggested based on the PL spectra and the active species trapping experiment.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liu, J., Liu, Y., Liu, N., Han, Y., Zhang, X., Huang, H., Lifshitz, Y., Lee, S.T., Zhong, J., and Kang, Z.: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225), 970 (2015).CrossRefGoogle Scholar
Chen, X., Shen, S., Guo, L., and Mao, S.S.: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110(11), 6503 (2010).CrossRefGoogle ScholarPubMed
Chen, X., Li, C., Gratzel, M., Kostecki, R., and Mao, S.S.: Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 41(23), 7909 (2012).CrossRefGoogle ScholarPubMed
Zhang, Y., Xia, T., Wallenmeyer, P., Harris, C.X., Peterson, A.A., Corsiglia, G.A., Murowchick, J., and Chen, X.: Photocatalytic hydrogen generation from pure water using silicon carbide nanoparticles. Energy Technol. 2(2), 183 (2014).CrossRefGoogle Scholar
Li, X., Yu, J., Low, J., Fang, Y., Xiao, J., and Chen, X.: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3(6), 2485 (2015).CrossRefGoogle Scholar
Zhang, S., Li, J., Wang, X., Huang, Y., Zeng, M., and Xu, J.: In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis. ACS Appl. Mater. Interfaces 6(24), 22116 (2014).CrossRefGoogle ScholarPubMed
Geim, A.K. and Grigorieva, I.V.: Van der Waals heterostructures. Nature 499(7459), 419 (2013).CrossRefGoogle ScholarPubMed
Rao, C.N.R., Ramakrishna Matte, H.S.S., and Maitra, U.: Graphene analogues of inorganic layered materials. Angew. Chem., Int. Ed. 52(50), 13162 (2013).CrossRefGoogle ScholarPubMed
Sun, Y., Gao, S., Lei, F., Xiao, C., and Xie, Y.: Ultrathin two-dimensional inorganic materials: New opportunities for solid state nanochemistry. Acc. Chem. Res. 48(1), 3 (2015).CrossRefGoogle ScholarPubMed
Wang, H., Yuan, H., Sae Hong, S., Li, Y., and Cui, Y.: Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 44(9), 2664 (2015).CrossRefGoogle ScholarPubMed
Sun, Y., Gao, S., Lei, F., and Xie, Y.: Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 44(3), 623 (2015).CrossRefGoogle ScholarPubMed
Niu, P., Zhang, L., Liu, G., and Cheng, H-M.: Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22(22), 4763 (2012).CrossRefGoogle Scholar
Ke, Y., Guo, H., Wang, D., Chen, J., and Weng, W.: ZrO2/g-C3N4 with enhanced photocatalytic degradation of methylene blue under visible light irradiation. J. Mater. Res. 29(20), 2473 (2014).CrossRefGoogle Scholar
Wen, J., Li, X., Li, H., Ma, S., He, K., Xu, Y., Fang, Y., Liu, W., and Gao, Q.: Enhanced visible-light H2 evolution of g-C3N4 photocatalysts via the synergetic effect of amorphous NiS and cheap metal-free carbon black nanoparticles as co-catalysts. Appl. Surf. Sci. 358, 204 (2015).CrossRefGoogle Scholar
Ding, J., Liu, Q., Zhang, Z., Liu, X., Zhao, J., Cheng, S., Zong, B., and Dai, W.L.: Carbon nitride nanosheets decorated with WO3 nanorods: Ultrasonic-assisted facile synthesis and catalytic application in the green manufacture of dialdehydes. Appl. Catal., B 165, 511 (2015).CrossRefGoogle Scholar
Chen, J., Shen, S., Guo, P., Wang, M., Su, J., Zhao, D., and Guo, L.: Plasmonic Ag@SiO2 core/shell structure modified g-C3N4 with enhanced visible light photocatalytic activity. J. Mater. Res. 29(01), 64 (2014).CrossRefGoogle Scholar
Bi, G., Wen, J., Li, X., Liu, W., Xie, J., Fang, Y., and Zhang, W.: Efficient visible-light photocatalytic H2 evolution over metal-free g-C3N4 co-modified with robust acetylene black and Ni(OH)2 as dual co-catalysts. RSC Adv. 6(37), 31497 (2016).CrossRefGoogle Scholar
Zhang, X., Xie, X., Wang, H., Zhang, J., Pan, B., and Xie, Y.: Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135(1), 18 (2013).CrossRefGoogle ScholarPubMed
Du, A., Sanvito, S., Li, Z., Wang, D., Jiao, Y., Liao, T., Sun, Q., Ng, Y.H., Zhu, Z., Amal, R., and Smith, S.C.: Hybrid graphene and graphitic carbon nitride nanocomposite: Gap opening, electron–hole puddle, interfacial charge transfer, and enhanced visible light response. J. Am. Chem. Soc. 134(9), 4393 (2012).CrossRefGoogle ScholarPubMed
Zhou, X., Hu, C., Hu, X., Peng, T., and Qu, J.: Plasmon-Assisted degradation of toxic pollutants with Ag–AgBr/Al2O3 under visible-light irradiation. J. Phys. Chem. C 114(6), 2746 (2010).CrossRefGoogle Scholar
Wu, C.: Facile room temperature synthesis of Ag@AgBr core–shell microspheres with high visible-light-driven photocatalytic performance. J. Mater. Res. 30(05), 677 (2015).CrossRefGoogle Scholar
Lin, H., Zhao, Y., Wang, Y., Cao, J., and Chen, S.: Controllable in situ synthesis of Ag/BiOI and Ag/AgI/BiOI composites with adjustable visible light photocatalytic performances. Mater. Lett. 132, 141 (2014).CrossRefGoogle Scholar
Tian, K., Liu, W.J., and Jiang, H.: Comparative investigation on photoreactivity and mechanism of biogenic and chemosythetic Ag/C3N4 composites under visible light irradiation. ACS Sustainable Chem. Eng. 3(2), 269 (2015).CrossRefGoogle Scholar
Dong, L., He, Y., Li, T., Cai, J., Hu, W., Wang, S., Lin, H., Luo, M., Yi, X., Zhao, L., Weng, W., and Wan, H.: A comparative study on the photocatalytic activities of two visible-light plasmonic photocatalysts: AgCl–SmVO4 and AgI–SmVO4 composites. Appl. Catal., A 472, 143 (2014).CrossRefGoogle Scholar
He, Y., Zhang, L., Teng, B., and Fan, M.: New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Environ. Sci. Technol. 49(1), 649 (2015).CrossRefGoogle ScholarPubMed
Li, T., He, Y., Lin, H., Cai, J., Dong, L., Wang, X., Luo, M., Zhao, L., Yi, X., and Weng, W.: Synthesis, characterization and photocatalytic activity of visible-light plasmonic photocatalyst AgBr–SmVO4 . Appl. Catal., B 138–139, 95 (2013).CrossRefGoogle Scholar
Ge, L., Han, C., Liu, J., and Li, Y.: Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl. Catal., A 409–410, 215 (2011).CrossRefGoogle Scholar
El-Sayed, M.A.: Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34(4), 257 (2001).CrossRefGoogle ScholarPubMed
Xu, M., Han, L., and Dong, S.: Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces 5(23), 12533 (2013).CrossRefGoogle ScholarPubMed
Wu, M., Yan, J.M., Zhao, M., and Jiang, Q.: Facile synthesis of an Ag2O–ZnO nanohybrid and its high photocatalytic activity. ChemPlusChem 77(10), 931 (2012).CrossRefGoogle Scholar
Yu, H., Liu, R., Wang, X., Wang, P., and Yu, J.: Enhanced visible-light photocatalytic activity of Bi2WO6 nanoparticles by Ag2O cocatalyst. Appl. Catal., B 111–112, 326 (2012).CrossRefGoogle Scholar
Lin, Q., Li, L., Liang, S., Liu, M., Bi, J., and Wu, L.: Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Appl. Catal., B 163, 135 (2015).CrossRefGoogle Scholar
Wang, X., Zhang, L., Lin, H., Nong, Q., Wu, Y., Wu, T., and He, Y.: Synthesis and characterization of a ZrO2/g-C3N4 composite with enhanced visible-light photoactivity for rhodamine degradation. RSC Adv. 4(75), 40029 (2014).CrossRefGoogle Scholar
Sayama, K. and Arakawa, H.: Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over zirconia catalyst. J. Phys. Chem. 97(3), 531 (1993).CrossRefGoogle Scholar
Yang, Y., Guo, Y., Liu, F., Yuan, X., Guo, Y., Zhang, S., Guo, W., and Huo, M.: Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst. Appl. Catal., B 142–143, 828 (2013).CrossRefGoogle Scholar
Yan, S.C., Li, Z.S., and Zou, Z.G.: Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25(17), 10397 (2009).CrossRefGoogle ScholarPubMed
Liu, J., Zhang, T., Wang, Z., Dawson, G., and Chen, W.: Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 21(38), 14398 (2011).CrossRefGoogle Scholar
Niu, P., Liu, G., and Cheng, H-M.: Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. J. Phys. Chem. C 116(20), 11013 (2012).CrossRefGoogle Scholar
Bojdys, M.J., Müller, J.O., Antonietti, M., and Thomas, A.: Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem. Eur. J. 14(27), 8177 (2008).CrossRefGoogle ScholarPubMed
Zhang, Z., Huang, J., Zhang, M., Yuan, Q., and Dong, B.: Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl. Catal., B 163, 298 (2015).CrossRefGoogle Scholar
Wang, Y., Liu, J., Wang, Y., Fan, C., and Ding, G.: Regeneration of novel visible-light-driven Ag/Ag3PO4@C3N4 hybrid materials and their high photocatalytic stability. Mater. Sci. Semicond. Process. 25, 330 (2014).CrossRefGoogle Scholar
Groenewolt, M. and Antonietti, M.: Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 17(14), 1789 (2005).CrossRefGoogle Scholar
He, Z., Shi, Y., Gao, C., Wen, L., Chen, J., and Song, S.: BiOCl/BiVO4 p–n heterojunction with enhanced photocatalytic activity under visible-light irradiation. J. Phys. Chem. C 118(1), 389 (2014).CrossRefGoogle Scholar
Ren, J., Wang, W., Sun, S., Zhang, L., and Chang, J.: Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation. Appl. Catal., B 92(1–2), 50 (2009).CrossRefGoogle Scholar
, X., Shen, J., Wu, Z., Wang, J., and Xie, J.: Deposition of Ag nanoparticles on g-C3N4 nanosheet by N,N-dimethylformamide: Soft synthesis and enhanced photocatalytic activity. J. Mater. Res. 29(18), 2170 (2014).CrossRefGoogle Scholar
Li, Z., Wang, J., Zhu, K., Ma, F., and Meng, A.: Ag/g-C3N4 composite nanosheets: Synthesis and enhanced visible photocatalytic activities. Mater. Lett. 145, 167 (2015).CrossRefGoogle Scholar
Xu, Y. and Schoonen, M.A.A.: The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85(3–4), 543 (2000).CrossRefGoogle Scholar
Supplementary material: File

Fu supplementary material

Fu supplementary material 1

Download Fu supplementary material(File)
File 595.6 KB