Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T10:10:02.511Z Has data issue: false hasContentIssue false

Visible Raman spectroscopy of carbon films synthesized by ion-plasma sputtering of graphite

Published online by Cambridge University Press:  13 January 2016

Alexander P. Ryaguzov*
Affiliation:
National Nanotechnological Laboratory Open Type, Al-Farabi KazNU, Almaty 050012, Kazakhstan; and Department of Molecular Physics, National Research Nuclear University MEPhI, Moscow 115409, Russia
Gaziz A. Yermekov
Affiliation:
National Nanotechnological Laboratory Open Type, Al-Farabi KazNU, Almaty 050012, Kazakhstan
Timur E. Nurmamytov
Affiliation:
National Nanotechnological Laboratory Open Type, Al-Farabi KazNU, Almaty 050012, Kazakhstan
Renata R. Nemkayeva*
Affiliation:
National Nanotechnological Laboratory Open Type, Al-Farabi KazNU, Almaty 050012, Kazakhstan; and Laboratory of engineering profile, Al-Farabi KazNU, Almaty 050040, Kazakhstan
Nazim R. Guseinov
Affiliation:
National Nanotechnological Laboratory Open Type, Al-Farabi KazNU, Almaty 050012, Kazakhstan
Rustam K. Aliaskarov
Affiliation:
Laboratory of engineering profile, Al-Farabi KazNU, Almaty 050040, Kazakhstan
*
a) Address all correspondence to these authors. e-mail: [email protected], [email protected]
a) Address all correspondence to these authors. e-mail: [email protected], [email protected]
Get access

Abstract

The article discusses the structure and properties of noncrystalline carbon films synthesized by ion-plasma sputtering of a graphite target in an argon atmosphere at direct current. Analysis of the molecular structure of carbon films was performed using Raman spectroscopy and dependence of the structure of synthesized films on the synthesis temperature and substrate material was revealed. Besides the main G peak possesses the values in a broad frequency range from 1500 to 1575 cm−1. The evolution of molecular structure peculiarities of synthesized carbon films depending on the synthesis conditions was clearly shown using the numerical methods of the Raman spectra decomposition. Studies of the optical spectra showed that the band gap of synthesized films varies from 0.78 to 1.67 eV and with increasing optical band gap, the value of G peak position decreases under laser excitation of 2.62 and 1.96 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Setton, R., Bernier, P., and Lefrant, S.: Carbon Molecules and Materials (Taylor & Francis Inc., USA and Canada, 2002); p. 49.CrossRefGoogle Scholar
Tersoff, J. and Ruoff, R.S.: RS structural properties of a carbon-nanotube crystal. Phys. Rev. Lett. 73(5), 676 (1994).CrossRefGoogle Scholar
Delgado, J.L., Herranz, A., and Martın, N.J., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: The nano-forms of carbon. Mater. Chem. 18, 1417 (2008).CrossRefGoogle Scholar
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).CrossRefGoogle ScholarPubMed
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005).CrossRefGoogle ScholarPubMed
Katsnelson, M.I.: Zitterbewegung, chirality, and minimal conductivity in graphene. Eur. Phys. J. B 51, 157 (2006).CrossRefGoogle Scholar
Bhattacharyya, S. and Silva, S.R.P.: Transport properties of low-dimensional amorphous carbon films. Thin Solid Films 482, 94 (2005).CrossRefGoogle Scholar
Morozov, S.V., Novoselov, K.S., and Geim, A.K.: Electron transport in graphene. Usp. Fiz. Nauk 178(7), 776 (2008).Google Scholar
Wang, S., Zhu, J., Wang, J., Yin, X., and Han, X.: Raman spectroscopy and mechanical properties of multilayer tetrahedral amorphous carbon films. Thin Solid Films 519, 4906 (2011).CrossRefGoogle Scholar
Miyajima, Y., Shannon, J.M., Henley, S.J., Stolojan, V., Cox, D.C., and Silva, S.R.P.: Electrical conduction mechanism in laser deposited amorphous carbon. Thin Solid Films 516, 257 (2007).CrossRefGoogle Scholar
Filik, J., May, P.W., Pearce, S.R.J., Wild, R.K., and Hallam, K.R.: XPS and laser Raman analysis of hydrogenated amorphous carbon films. Diamond Relat. Mater. 12, 974 (2003).CrossRefGoogle Scholar
Casiraghi, C., Ferrari, A.C., and Robertson, J.: Raman spectroscopy of hydrogenated amorphous carbons. Phys. Rev. B 72, 085401 (2005).CrossRefGoogle Scholar
Gilkes, K.W.R., Sands, H.S., Batchelder, D.N., Robertson, J., and Milne, W.I.: Direct observation of sp3 bonding in tetrahedral amorphous carbon using ultraviolet Raman spectroscopy. Appl. Phys. Lett. 70(15), 1980 (1997).CrossRefGoogle Scholar
Babaev, A.A., Sultanov, S.B., Abdulvagabov, M.Sh., and Terukov, E.I.: Electrical, optical and mechanical properties of amorphous hydrogenated carbon obtained under different conditions of deposition. Fiz. Tekh. Poluprovodn. 45(1), 120 (2011).Google Scholar
Merkulov, V.L., Lannin, J.S., Munro, C.H., Asher, S.A., Veerasamy, V.S., and Milne, W.I.: UV studies of tetrahedral bonding in diamondlike amorphous carbon. Phys. Rev. Lett. 78(25), 4869 (1997).CrossRefGoogle Scholar
Robertson, J.: Hard amorphous (diamond-like) carbons. Mater. Sci. Eng., R 37, 129 (2002).CrossRefGoogle Scholar
Paik, N.: Raman and XPS studies of DLC films prepared by a magnetron sputter-type negative ion source. Surf. Coat. Technol. 200, 2170 (2005).CrossRefGoogle Scholar
Ferrari, A.C. and Robertson, J.: Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414 (2001).CrossRefGoogle Scholar
Ferrari, A.C. and Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095 (2000).CrossRefGoogle Scholar
Sarsembinov, Sh.Sh., Prikhodko, O.Yu., Ryaguzov, A.P., Maksimova, S.Ya., Daineko, Ye.A., and Mahmoud, F.A.: Electronic properties of diamond-like carbon films modified by silver nanoclusters. Phys. Status Solidi C 7, 805 (2010).CrossRefGoogle Scholar
Huang, S.M., Sun, Z., Lu, Y.F., and Hong, M.H.: Ultraviolet and visible Raman spectroscopy characterization of diamond–like carbon film growth by pulsed laser deposition. Appl. Phys. A 74, 519 (2002).CrossRefGoogle Scholar
Wagner, J., Ramsteiner, M., Wild, Ch., and Koidl, P.: Resonant Raman scattering of amorphous carbon and polycrystalline diamond films. Phys. Rev. B 40, 1817 (1989).CrossRefGoogle ScholarPubMed
Savvides, N. and Bell, N.J.: Microhardness and Young’s modulus of diamond and diamondlike carbon films. J. Appl. Phys. 72(7), 2791 (1992).CrossRefGoogle Scholar
Tamor, M.A. and Vassell, W.C.: Raman “fingerprinting” of amorphous carbon films. J. Appl. Phys. 76(6), 3823 (1994).CrossRefGoogle Scholar
Tuinstra, F. and Koening, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
Windl, W., Pavone, P., Karch, K., Shutt, O., Strauch, D., Giannozzi, P., and Baroni, S.: Second-order Raman spectra of diamond from ab initio phonon calculations. Phys. Rev. B 48, 3164 (1993).CrossRefGoogle ScholarPubMed
Prawer, S., Nugent, K.W., Lifshits, Y., Lempert, G.D., Grossman, E., Kulik, J., Avigal, I., and Kalish, R.: Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition. Diamond Relat. Mater. 5, 433 (1996).CrossRefGoogle Scholar
Ferrari, A.C. and Robertson, J.: Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos. Trans. R. Soc., A 362, 2477 (2004).CrossRefGoogle ScholarPubMed
Schwan, J., Ulrich, S., Batori, V., Ehrhardt, H., and Silva, S.R.P.: Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 80, 440 (1996).CrossRefGoogle Scholar
Ferrari, A.C. and Robertson, J.: Origin of the 1150-cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63, 121405-1 (2001).Google Scholar
Tauc, J.: Optical properties of semiconductors in the visible and ultra-violet ranges. Prog. Semicond. 9, 89 (1965).Google Scholar
Chhowalla, M., Robertson, J., Chen, C.W., Silva, S.R.P., Davis, C.A., Amaratunga, G.A.J., and Milne, W.I.: Influence of ion energy and substrate temperature on the optical and electronic properties of tetrahedral amorphous carbon (ta-C) films. J. Appl. Phys. 81(1), 139 (1997).CrossRefGoogle Scholar