Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T13:17:27.739Z Has data issue: false hasContentIssue false

Variation of dislocation morphology with strain in GexSi1−x epilayers on (100)Si

Published online by Cambridge University Press:  31 January 2011

E. P. Kvam
Affiliation:
Department of Materials Science and Engineering, The University, Liverpool L69 3BX, United Kingdom
D. M. Maher
Affiliation:
Department of Materials Science and Engineering, The University, Liverpool L69 3BX, United Kingdom
C. J. Humphreys
Affiliation:
Department of Materials Science and Engineering, The University, Liverpool L69 3BX, United Kingdom
Get access

Abstract

A change in microstructure, including dislocation Burgers vector, length, and behavior, has been observed to occur when the epilayer mismatch is varied in GexSi1−x layers grown on (100) Si. At low mismatches (<1.5%), there is an orthogonal array of very long 60° misfit dislocations. At higher mismatches (>2.3%) there is an orthogonal array of short edge dislocations. At intermediate mismatches (1.5 to 2.3%) there is a mixture of 60° and edge dislocations. The nature of the microstructure has a pronounced effect on the density of threading dislocations in the epilayer, which increase by a factor of ∼60× through a relatively small range of mismatch (1.7 to 2.1%, corresponding to x ranging from 0.4 to 0.5). These morphologies are discussed in the light of recent work on the sources of misfit dislocations. While mechanisms for the introduction and propagation of dislocations at low mismatch have recently been observed and explained, the high misfit case is clearly very different; i.e., surface nucleation seems to be likely in the latter case as opposed to operation of an internal source in the former. A mechanism for edge dislocation formation is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kasper, E. and Herzog, H. J., Thin Solid Films 44, 357 (1977).CrossRefGoogle Scholar
2Hagen, W. and Strunk, H., Appl. Phys. 17, 85 (1978).CrossRefGoogle Scholar
3Rajan, K. and Denhoff, M., J. Appl. Phys. 62 (5), 1710 (1987).CrossRefGoogle Scholar
4Tuppen, C. G., Gibbings, C. J., and Hockly, M., J. Cryst. Growth 94, 392 (1989).CrossRefGoogle Scholar
5Gibbings, C. J., Tuppen, C. G., and Hockly, M., Appl. Phys. Lett. 54 (2), 148 (1989).CrossRefGoogle Scholar
6Kvam, E. P., Eaglesham, D. J., Maher, D. M., Humphreys, C. J., Bean, J. C., Green, G. S., and Tanner, B. K., in Defects in Electronic Materials, edited by Stavola, M., Pearton, S. J., and Davies, G. (Mater. Res. Soc. Symp. Proc. 104, Pittsburgh, PA, 1988), p. 623.Google Scholar
7Eaglesham, D. J., Kvam, E. P., Maher, D. M., Humphreys, C. J., Green, G. S., Tanner, B. K., and Bean, J. C., Appl. Phys. Lett. 53, 2083 (1988).CrossRefGoogle Scholar
8Eaglesham, D. J., Maher, D. M., Kvam, E. P., Bean, J. C., and Humphreys, C. J., Phys. Rev. Lett. 62 (2), 187 (1989).CrossRefGoogle Scholar
9Eaglesham, D. J., Kvam, E. P., Maher, D. M., Humphreys, C. J., and Bean, J. C., Phil. Mag. A 59 (5), 1059 (1989).CrossRefGoogle Scholar
10Hull, R. and Bean, J. C., Appl. Phys. Lett. 54 (10), 925 (1989).CrossRefGoogle Scholar
11Hull, R. and Bean, J. C., J. Vac. Sci. Tech. A, 7 (4), 2580 (1989).CrossRefGoogle Scholar
12Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
13Matthews, J. W., Blakeslee, A. E., and Mader, S., Thin Solid Films 33, 253 (1976).CrossRefGoogle Scholar
14Marée, P. M. J., Barbour, J. C., van der Veen, J. F., Kavanagh, K. L., Bulle-Lieuwma, C. W. T., and Viegers, M. P. A., J. Appl. Phys. 62 (11), 4413 (1987).CrossRefGoogle Scholar
15Dodson, B. and Tsao, J., Appl. Phys. Lett. 51, 1325 (1987).CrossRefGoogle Scholar
16Tsao, J. and Dodson, B., Appl. Phys. Lett. 53 (10), 848 (1988).CrossRefGoogle Scholar
17Fitzgerald, E. A., Kirchner, P. D., Petit, G. D., Woodall, J. M., and Ast, D. G., in Defects in Electronic Materials, edited by Stavola, M., Pearton, S. J., and Davies, G. (Mater. Res. Soc. Symp. Proc. 104, Pittsburgh, PA, 1988), p. 633.Google Scholar
18Fitzgerald, E. A., Ast, D. G., Kirchner, P. D., Petit, G. D., and Woodall, J. M., J. Appl. Phys. 63 (3), 693 (1988).CrossRefGoogle Scholar
19Washburn, J., Thomas, G., and Queisser, H. J., Appl. Phys. Lett. 35 (6), 1909 (1964).Google Scholar
20Hull, R. (unpublished).Google Scholar