Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T16:23:02.836Z Has data issue: false hasContentIssue false

Uranyl peroxide nanoclusters at high-pressure

Published online by Cambridge University Press:  14 August 2017

Katlyn M. Turner*
Affiliation:
Department of Geological Sciences, Stanford University, Stanford, California 94305, USA
Jennifer E.S. Szymanowski
Affiliation:
Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
Fuxiang Zhang
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Yu Lin
Affiliation:
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
Brendan T. McGrail
Affiliation:
Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
Wendy L. Mao
Affiliation:
Department of Geological Sciences, Stanford University, Stanford, California 94305, USA; and Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
Peter C. Burns
Affiliation:
Department of Civil & Environmental Engineering & Earth Sciences and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
Rodney C. Ewing
Affiliation:
Department of Geological Sciences, Stanford University, Stanford, California 94305, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

U60 ([UO2(O2)(OH)]60 60− in water) is a uranyl peroxide nanocluster with a fullerene topology and O h symmetry. U60 clusters can exist in crystalline solids or in liquids; however, little is known of their behavior at high pressures. We compressed the U60-bearing material: Li68K12(OH)20[UO2(O2)(OH)]60(H2O)310 ( $Fm\bar 3$ ; a = 37.884 Å) in a diamond anvil cell to determine its response to increasing pressure. Three length scales and corresponding structural features contribute to the compression response: uranyl peroxide bonds (<0.5 nm), isolated single nanoclusters (2.5 nm), and the long-range periodicity of nanoclusters within the solid (>3.7 nm). Li68K12(OH)20[UO2(O2)(OH)]60(H2O)310 transformed to a tetragonal structure below 2 GPa and irreversibly amorphized between 9.6 and 13 GPa. The bulk modulus of the tetragonal U60-bearing material was 25 ± 2 GPa. The pressure-induced amorphous phase contained intact U60 clusters, which were preserved beyond the loss of long-range periodicity. The persistence of U60 clusters at high pressure may have been enhanced by the interaction between U60 nanoclusters and the alcohol pressure medium. Once formed, U60 nanoclusters persist regardless of their associated long-range ordering—in crystals, amorphous solids, or solutions.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: William J. Weber

References

REFERENCES

Sigmon, G., Ling, J., Unruh, D., Moore-Shay, L., Ward, M., Weaver, B., and Burns, P.: Uranyl–peroxide interactions favor nanocluster self-assembly. J. Am. Chem. Soc. 131, 16648 (2009).Google Scholar
Miró, P., Pierrefixe, S., Gicquel, M., Gil, A., and Bo, C.: On the origin of the cation templated self-assembly of uranyl-peroxide nanoclusters. J. Am. Chem. Soc. 132, 17787 (2010).Google Scholar
Vlaisavljevich, B., Gagliardi, L., and Burns, P.: Understanding the structure and formation of uranyl peroxide nanoclusters by quantum chemical calculations. J. Am. Chem. Soc. 132, 14503 (2010).Google Scholar
Burns, P. and Hughes, K.: Studtite, [(UO2)(O2)(H2O)2](H2O)2: The first structure of a peroxide mineral. Am. Mineral. 88, 1165 (2003).Google Scholar
Burns, P., Kubatko, K., Sigmon, G., Fryer, B., Gagnon, J., Antonio, M., and Soderholm, L.: Actinyl peroxide nanospheres. Angew. Chem., Int. Ed. 44, 2135 (2005).CrossRefGoogle ScholarPubMed
Unruh, D., Burtner, A., Pressprich, L., Sigmon, G., and Burns, P.: Uranyl peroxide closed clusters containing topological squares. J. Chem. Soc., Dalton Trans. 39, 5807 (2010).CrossRefGoogle ScholarPubMed
Forbes, T., McAlpin, J., Murphy, R., and Burns, P.: Metal–oxygen isopolyhedra assembled into fullerene topologies. Angew. Chem., Int. Ed. 47, 2824 (2008).CrossRefGoogle ScholarPubMed
Sigmon, G., Unruh, D., Ling, J., Weaver, B., Ward, M., Presspich, L., Simonetti, A., and Burns, P.: Symmetry versus minimal pentagonal adjacencies in uranium-based polyoxometalate fullerene topologies. Angew. Chem., Int. Ed. 48, 2737 (2009).Google Scholar
Unruh, D., Ling, J., Qiu, J., Pressprich, L., Baranay, M., Ward, M., and Burns, P.: Complex nanoscale cage clusters built from uranyl polyhedra and phosphate tetrahedra. Inorg. Chem. 50, 5509 (2011).Google Scholar
Ling, J., Qiu, J., Szymanowski, J., and Burns, P.: Low-symmetry uranyl pyrophosphate cage clusters. Chem.–Eur. J. 17, 2571 (2011).Google Scholar
Ling, J., Wallace, C., Szymanowski, J., and Burns, P.: Hybrid uranium–oxalate fullerene topology cage clusters. Angew. Chem., Int. Ed. 49, 7271 (2010).Google Scholar
Ling, J., Ozga, M., Stoffer, M., and Burns, P.: Uranyl peroxide pyrophosphate cage clusters with oxalate and nitrate bridges. J. Chem. Soc., Dalton Trans. 41, 7278 (2012).Google Scholar
Qiu, J., Ling, J., Jouffret, L., Thomas, R., Szymanowski, J., and Burns, P.: Water-soluble multi-cage super tetrahedral uranyl peroxide phosphate clusters. Chem. Sci. 5, 303 (2014).Google Scholar
Qiu, J., Ling, J., Sui, A., Szymanowski, J., Simonetti, A., and Burns, P.: Time-resolved self-assembly of a fullerene-topology core–shell cluster containing 68 uranyl polyhedra. J. Am. Chem. Soc. 134, 1810 (2012).Google Scholar
Ling, J., Qiu, J., Sigmon, G., Ward, M., Szymanowski, J., and Burns, P.: Uranium pyrophosphate/methylenediphosphonate polyoxometalate cage clusters. J. Am. Chem. Soc. 132, 13395 (2010).CrossRefGoogle ScholarPubMed
Qiu, J., Nguyen, K., Jouffret, L., Szymanowski, J., and Burns, P.: Time-resolved assembly of chiral uranyl peroxo cage clusters containing belts of polyhedra. Inorg. Chem. 52, 337 (2013).Google Scholar
Ling, J., Qiu, J., and Burns, P.: Uranyl peroxide oxalate cage and core–shell clusters containing 50 and 120 uranyl ions. Inorg. Chem. 51, 2403 (2012).Google Scholar
Burns, P.: Nanoscale uranium-based cage clusters inspired by uranium mineralogy. Mineral. Mag. 75, 1 (2011).CrossRefGoogle Scholar
Qiu, J. and Burns, P.: Clusters of actinides with oxide, peroxide or hydroxide bridges. Chem. Rev. 113, 1097 (2012).CrossRefGoogle ScholarPubMed
Burns, P., Ewing, R., and Hawthorne, F.: The crystal chemistry of hexavalent uranium: Polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. Can. Mineral. 35, 1551 (1997).Google Scholar
Burns, P.: U6+ minerals and inorganic compounds: Insights into an expanded structural hierarchy of crystal structures. Can. Mineral. 43, 1839 (2005).CrossRefGoogle Scholar
Burns, P., Ewing, R., and Navrotsky, A.: Nuclear fuel in a reactor accident. Science 335, 1184 (2012).CrossRefGoogle Scholar
Armstrong, C., Nyman, M., Shvareva, T., Sigmon, G., Burns, P., and Navrotsky, A.: Uranyl peroxide enhanced nuclear fuel corrosion in seawater. Proc. Natl. Acad. Sci. 109, 1874 (2012).Google Scholar
Flynn, S., Szymanowski, J., Gao, Y., Liu, T., Burns, P., and Fein, J.: Experimental measurements of U60 nanocluster stability in aqueous solution. Geochim. Cosmochim. Acta 156, 94 (2015).Google Scholar
Wallace, C.: Solution and aggregation behavior of the U60 nanocluster and post-detonation nuclear forensic analysis of trinitite. Ph.D. thesis, University of Notre Dame, Notre Dame, Indiana, 2013.Google Scholar
Wylie, E., Peruski, K., Weidman, J., Phillip, W., and Burns, P.: Ultrafiltration of uranyl peroxide nanoclusters for the separation of uranium from aqueous solution. ACS Appl. Mater. Interfaces. 6, 473 (2013).CrossRefGoogle ScholarPubMed
Wylie, E., Peruski, K., Prizio, S., Bridges, A., Rudisill, T., Hobbs, D., Phillip, W., and Burns, P.: Processing used nuclear fuel with nanoscale control of uranium and ultrafiltration. J. Nucl. Mater. 473, 125 (2016).Google Scholar
Peruski, K., Bernales, V., Dembowski, M., Lobeck, H., Pellegrini, K., Sigmon, G., Hickam, S., Wallace, C., Szymanowski, J., Balboni, E., Gagliardi, L., and Burns, P.: Uranyl peroxide cage cluster solubility in water and the role of the electrical double layer. Inorg. Chem. 56, 1333 (2017).CrossRefGoogle ScholarPubMed
Patterson, J., Catledge, S., Vohra, Y., Akella, J., and Weir, S.: Electrical and mechanical properties of C70 fullerene and graphite under high pressures studied using designer diamond anvils. Phys. Rev. Lett. 85, 5634 (2000).Google Scholar
Kumar, R., Pravica, M., Cornelius, A., Nicol, M., Hu, M., and Chow, P.: X-ray Raman scattering studies on C60 fullerenes and multi-walled carbon nanotubes under pressure. Diamond Relat. Mater. 16, 1250 (2007).Google Scholar
Venkateswaran, U., Rao, A., Richter, E., Menon, M., Rinzler, A., Smalley, R., and Eklund, P.: Probing the single-wall carbon nanotube bundle: Raman scattering under high pressure. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 10928 (1999).Google Scholar
Miller, E., Nesting, D., and Badding, J.: Quenchable transparent phase of carbon. Chem. Mater. 9, 18 (1997).CrossRefGoogle Scholar
Sood, A., Teresdesai, P., Muthu, D., Sen, R., Govindaraj, A., and Rao, C.: Pressure behaviour of single wall carbon nanotube bundles and fullerenes: A Raman study. Phys. Status Solidi B 215, 393 (1999).Google Scholar
Patterson, J., Vohra, Y., Weir, S., and Akella, J.: Single-wall carbon nanotubes under high pressures to 62 GPa studied using designer diamond anvils. J. Nanosci. Nanotechnol. 1, 143 (2001).CrossRefGoogle ScholarPubMed
Patterson, J., Catledge, S., Vohra, Y., Akella, J., and Weir, S.: Electrical and mechanical properties of C70 fullerene and graphite under high pressures studied using designer diamond anvils. Phys. Rev. Lett. 85, 5364 (2000).Google Scholar
Lin, Y., Zhang, L., Mao, H., Chow, P., Xiao, Y., Baldini, M., Shu, J., and Mao, W.: Amorphous diamond: A high-pressure superhard carbon allotrope. Phys. Rev. Lett. 107, 175504 (2011).Google Scholar
Wang, L., Liu, B., Li, H., Yang, W., Ding, Y., Sinogeikin, S., Meng, Y., Liu, Z., Zeng, X., and Mao, W.: Long-range ordered carbon clusters: A crystalline material with amorphous building blocks. Science 337, 825 (2012).Google Scholar
Wang, D. and Fernandez-Martinez, A.: Order from disorder. Science 337, 812 (2012).Google Scholar
Elliott, S.: Medium-range structural order in covalent amorphous solids. Nature 354, 445 (1991).Google Scholar
Lucovsky, G.: Specification of medium range order in amorphous materials. J. Non-Cryst. Solids 97, 155 (1987).CrossRefGoogle Scholar
Červinka, L.: Medium-range ordering in non-crystalline solids. J. Non-Cryst. Solids 90, 371 (1987).Google Scholar
Mao, H., Bell, P., Shaner, J., and Steinberg, S.: Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R 1 fluorescence pressure gauge from 0.06 to 1 Mbar. J. Appl. Phys. 49, 3276 (1978).Google Scholar
Angel, R., Bujak, M., Zhao, J., Gatta, G., and Jacobsen, S.: Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J. Appl. Crystallogr. 40, 26 (2007).Google Scholar
Bassett, W.: Diamond anvil cell, 50th birthday. High Pressure Res. 29, 163 (2009).Google Scholar
Jaffe, A., Lin, Y., Mao, W., and Karunadasa, H.: Pressure-induced conductivity and yellow-to-black piezochromism in a layered Cu–Cl hybrid perovskite. J. Am. Chem. Soc. 137, 1673 (2015).Google Scholar
Jiang, S., Fang, Y., Li, R., Xiao, H., Crowley, J., Wang, C., White, T., Goddard, W., Wang, Z., Baikie, T., and Fang, J.: Pressure-dependent polymorphism and band-gap tuning of methylammonium lead iodide perovskite. Angew. Chem., Int. Ed. 55, 6540 (2016).Google Scholar
Umeyama, D., Lin, Y., and Karunadasa, H.: Red-to-black piezochromism in a compressible Pb–I–SCN layered perovskite. Chem. Mater. 28, 3241 (2016).CrossRefGoogle Scholar
Jaffe, A., Lin, Y., Beavers, C., Voss, J., Mao, W., and Karunadasa, H.: High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties. ACS Cent. Sci. 2, 201 (2016).Google Scholar
Spencer, E., Kiran, M., Li, W., Ramamurty, U., Ross, N., and Cheetham, A.: Pressure-induced bond rearrangement and reversible phase transformation in a metal–organic framework. Angew. Chem., Int. Ed. 53, 5583 (2014).Google Scholar
Spencer, E., Zhao, J., Ross, N., Andrews, M., Surbella, R., and Cahill, C.: The influence of pressure on the photoluminescence properties of a terbium-adipate framework. J. Solid State Chem. 202, 99 (2013).Google Scholar
Spencer, E., Ross, N., Surbella, R., and Cahill, C.: The influence of pressure on the structure of a 2D uranium(VI) carboxyphosphonoate compound. J. Solid State Chem. 218, 1 (2014).CrossRefGoogle Scholar
Heffernan, K., Ross, N., Spencer, E., and Boatner, L.: The structural response of gadolinium phosphate to pressure. J. Solid State Chem. 241, 180 (2016).Google Scholar
Spencer, E., Ross, N., and Angel, R.: The high pressure behaviour of the 3D copper carbonate framework {[Cu(CO3)2](CH6N3)2} n . J. Mater. Chem. 22, 2074 (2012).Google Scholar
Spencer, E., Soghomonian, V., and Ross, N.: Gallium arsenate dihydrate under pressure: Elastic properties, compression mechanism, and hydrogen bonding. Inorg. Chem. 54, 7548 (2015).Google Scholar
Wojdyr, M.: Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 43(5), 1126 (2010).Google Scholar
Rodriguez-Carvajal, J.: FullProf Suite (LLB Sacley and LCSIM Rennes, France, 2003).Google Scholar
Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. 71, 809 (1947).Google Scholar
Angel, R., Alvaro, M., and Gonzalez-Platas, J.: EosFit7c and a Fortran module (library) for equation of state calculations. Z. Kristallogr.–Cryst. Mater. 229, 405 (2014).Google Scholar
McGrail, B., Sigmon, G., Jouffret, L., Andrews, C., and Burns, P.: Raman spectroscopic and ESI-MS characterization of uranyl peroxide cage clusters. Inorg. Chem. 53, 1562 (2014).Google Scholar
Haddon, R., Brus, L., and Raghavachari, K.: Electronic structure and bonding in icosahedral C60 . Chem. Phys. Lett. 125, 459 (1986).Google Scholar
Martin, J., Goettler, S., Fossé, N., and Iton, L.: Designing intermediate-range order in amorphous materials. Nature 419, 381 (2002).Google Scholar
Roy, X., Lee, C., Crowther, A., Schenck, C., Besara, T., Lalancette, R., Siegrist, T., Stephens, P., Brus, L., Kim, P., and Steigerwald, M.: Nanoscale atoms in solid-state chemistry. Science 341, 157 (2013).Google Scholar
Supplementary material: File

Turner supplementary material

Figures S1-S2

Download Turner supplementary material(File)
File 950.7 KB