Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T01:53:59.607Z Has data issue: false hasContentIssue false

Unusual behavior of the magnetoresistance of boron carbonitride films at low temperature

Published online by Cambridge University Press:  31 January 2011

L. Filipozzi
Affiliation:
CNRS–Centre de Recherche Paul Pascal, Université Bordeaux I, avenue du Dr Schweitzer, 33600 Pessac, France
L. Piraux*
Affiliation:
Laboratoire de Physico-Chimie et de Physique des Matériaux, Département des Sciences des Matériaux et des Procédés, Université Catholique de Louvain, Place Croix du Sud, 1 B-1348 Louvain-la-Neuve, Belgique
A. Marchand
Affiliation:
CNRS–Centre de Recherche Paul Pascal, Université Bordeaux I, avenue du Dr Schweitzer, 33600 Pessac, France
A. Derré
Affiliation:
CNRS–Centre de Recherche Paul Pascal, Université Bordeaux I, avenue du Dr Schweitzer, 33600 Pessac, France
A. Adouard
Affiliation:
CNRS–Université Paul Sabatier–INSA, Service National des Champs Magnétiques Pulsés, Complexe Scientifique de Rangueil, 31077 Toulouse, France
M. Kinany-Alaoui
Affiliation:
Laboratoire de Physico-Chimie et de Physique des Matériaux, Département des Sciences des Matériaux et des Procédés, Université Catholique de Louvain, Place Croix du Sud, 1 B-1348 Louvain-la-Neuve, Belgique
*
a)Author to whom all correspondence should be addressed.
Get access

Abstract

We have performed resistivity and magnetoresistance measurements down to 0.3 K, and under fields up to 37 T of boron carbonitride and BC3 films prepared by chemical vapor deposition. The turbostratic structure of the as-deposited materials favors a 2D weak localization effect which is invoked to explain the negative magnetoresistance (MR) as well as the log T variation of the resistivity. However, at very low temperature a positive component is superimposed on the negative MR. At high fields, the total MR is positive and almost isotropic. Usual theories are unable to account for the observed phenomenon. Increasing heat treatments up to 1800 °C increase the 2D character of the deposits, which show an increasingly negative magnetoresistance. For still higher treatments, the change of the films to a 3D graphitic-like structure leads to a vanishing of the negative magnetoresistance.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lowell, C. E., J. Am. Ceram. Soc. 50, 142 (1967).Google Scholar
2.Badzian, A. R., Niemyski, T., Appenheimer, S., and Olkusnik, E., in Proceedings of the 3rd International Conference on Chemical Vapor Deposition, edited by Glaski, F. A. (American Nuclear Society, Hinsdale, IL 1972), p. 747.Google Scholar
3.Kouvetakis, J., Kaner, R. B., Sattler, M. L., and Bartlett, N., J. Chem. Soc. Commun., 1758 (1986).CrossRefGoogle Scholar
4.Kaner, R. B., Kouvetakis, J., Warble, C. E., Sattler, M. L., and Bartlett, N., Mater. Res. Bull. 22, 399 (1987).CrossRefGoogle Scholar
5.Kouvetakis, J., Sasaki, T., Shen, C., Hagiwara, R., Lerner, M., Krishnan, K. M., and Bartlett, N., Synthetic Metals 34, 1 (1989).CrossRefGoogle Scholar
6.Moore, A. W., Proceedings of the 18th International Biennial Conference on Carbon, Worcester Polytechnic Institute, Worcester, MA (American Carbon Society, St. Mary, PA, 1987), p. 523.Google Scholar
7.Moore, A. W., Strong, S. L., Doll, G. L., Dresselhaus, M. S., Spain, I. L., Bowers, C. W., Issi, J. P., and Piraux, L., J. Appl. Phys. 65, 5109 (1989).CrossRefGoogle Scholar
8.Bessman, T. M., J. Am. Ceram. Soc. 73, 2498 (1990).CrossRefGoogle Scholar
9.Saugnac, F., Teyssandier, F., and Marchand, A., J. Chem. Phys. 89, 1453 (1992).Google Scholar
10.Derré, A., Filipozzi, L., Bouyer, F., and Marchand, A., J. Mater. Sci. 29, 1589 (1994).CrossRefGoogle Scholar
11.Filipozzi, L., Derré, A., Conard, J., Piraux, L., and Marchand, A., Carbon (in press).Google Scholar
12.Anderson, P. W., Phys. Rev. 109, 1492 (1958).Google Scholar
13.Mott, N. F. and Davis, E., in Electronic Processes In Non-Crystalline Materials (Clarendon Press, Oxford, 1979).Google Scholar
14.Bergmann, G., Phys. Rep. 107, 1 (1984).Google Scholar
15.Hikami, S., Larkin, A., and Nagaoka, Y., Prog. Theor. Phys. 63, 707 (1980).Google Scholar
16.Rosenbaum, R., Phys. Rev. B 32, 2190 (1985).CrossRefGoogle Scholar
17.Mrozowski, S. and Chaberski, A., Phys. Rev. 104, 74 (1956).CrossRefGoogle Scholar
18.Yazawa, K., J. Phys. Soc. Jpn. 26, 107 (1969).CrossRefGoogle Scholar
19.Delhaès, P., de Kepper, P., and Ulrich, M., Philos. Mag. 29, 1301 (1974).Google Scholar
20.Bright, A. A., Phys. Rev. B 20, 5142 (1979).CrossRefGoogle Scholar
21.Bayot, V., Piraux, L., Michenaud, J. P., and Issi, J. P., Phys. Rev. B 40, 3514 (1989).Google Scholar
22.Bayot, V., Piraux, L., Michenuad, J. P., Issi, J. P., Lelaurain, M., and Moore, A., Phys. Rev. B 41, 11770 (1990).CrossRefGoogle Scholar
23.Koike, Y. and Fukase, T., Solid State Commun. 62, 499 (1987).CrossRefGoogle Scholar
24.Kondo, J., Solid State Phys. 23, 183 (1969).CrossRefGoogle Scholar
25.Maire, J., Gremion, R., Moreau, M., Rappeneau, J., Yvars, M., and Fillatre, A., Carbon 5 (1967).CrossRefGoogle Scholar