Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T18:03:08.190Z Has data issue: false hasContentIssue false

Understanding the driving forces for crystal growth by oriented attachment through theory and simulations

Published online by Cambridge University Press:  14 May 2019

Maria L. Sushko*
Affiliation:
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Oriented attachment (OA) is a particle-based crystallization pathway in which nanocrystals self-assemble in solution and attach along certain crystallographic direction often forming highly organized three-dimensional crystal morphologies. The pathway offers the potential for a general synthetic approach of hierarchical nanomaterials, in which multiscale structural control is achieved by manipulating the interfacial nucleation and self-assembly of nanoscale building blocks. Here, the current status of the development of a predictive theoretical framework for modeling crystallization by OA is reviewed. A particular emphasis is made on recent developments in understanding the microscopic details of solvent-mediated forces that drive nanocrystal reorientation and alignment for face-selective attachment. Interactions arising from the correlated solvent dynamics at particle interfaces emerge as the main sources of long-range face-specific interparticle forces and short-range torque for fine particle alignment into lattice matching configuration. These findings shift the focus of the experimental and theoretical research of OA onto the detailed study of interfacial solvent structure and dynamics.

Type
Invited Feature Paper - REVIEW
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

Li, D.S., Nielsen, M.H., Lee, J.R.I., Frandsen, C., Banfield, J.F., and De Yoreo, J.J.: Direction-specific interactions control crystal growth by oriented attachment. Science 336, 10141018 (2012).CrossRefGoogle ScholarPubMed
Nielsen, M.H., Li, D.S., Zhang, H.Z., Aloni, S., Han, T.Y.J., Frandsen, C., Seto, J., Banfield, J.F., Colfen, H., and De Yoreo, J.J.: Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Microsc. Microanal. 20, 425436 (2014).CrossRefGoogle ScholarPubMed
De Yoreo, J.J., Gilbert, P.U.P.A., Sommerdijk, N.A.J.M., Penn, R.L., Whitelam, S., Joester, D., Zhang, H.Z., Rimer, J.D., Navrotsky, A., Banfield, J.F., Wallace, A.F., Michel, F.M., Meldrum, F.C., Colfen, H., and Dove, P.M.: Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, 6760 (2015).CrossRefGoogle ScholarPubMed
Ivanov, V.K., Fedorov, P.P., Baranchikov, A.Y., and Osiko, V.V.: Oriented attachment of particles: 100 years of investigations of non-classical crystal growth. Russ. Chem. Rev. 83, 12041222 (2014).CrossRefGoogle Scholar
Gaubert, P.: Sur la production artificielle de la macle des spinelles dans les cristaux d’azotate de plomb. Bull. Soc. Franç. Minér. 19, 431434 (1896).Google Scholar
Penn, R.L. and Banfield, J.F.: Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2. Am. Mineral. 83, 10771082 (1998).CrossRefGoogle Scholar
Meng, L.R., Chen, W.M., Chen, C.P., Zhou, H.P., Peng, Q., and Li, Y.D.: Uniform α-Fe2O3 nanocrystal moniliforme-shape straight-chains. Cryst. Growth Des. 10, 479482 (2010).CrossRefGoogle Scholar
Zhang, H.Z. and Banfield, J.F.: Energy calculations predict nanoparticle attachment orientations and asymmetric crystal formation. J. Phys. Chem. Lett. 3, 28822886 (2012).CrossRefGoogle Scholar
Zhang, X., He, Y., Sushko, M.L., Liu, J., Luo, L.L., De Yoreo, J.J., Mao, S.X., Wang, C.M., and Rosso, K.M.: Direction-specific van der Waals attraction between rutile TiO2 nanocrystals. Science 356, 433437 (2017).CrossRefGoogle Scholar
Zhang, X., Shen, Z., Liu, J., Kerisit, S.N., Bowden, M.E., Sushko, M.L., De Yoreo, J.J., and Rosso, K.M.: Direction-specific interaction forces underlying zinc oxide crystal growth by oriented attachment. Nat. Commun. 8, 835 (2017).CrossRefGoogle ScholarPubMed
Li, D.S., Chun, J.H., Xiao, D.D., Zhou, W.J., Cai, H.C., Zhang, L., Rosso, K.M., Mundy, C.J., Schenter, G.K., and De Yoreo, J.J.: Trends in mica-mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment. Proc. Natl. Acad. Sci. U. S. A. 114, 75377542 (2017).CrossRefGoogle ScholarPubMed
Higgins, M.J., Polcik, M., Fukuma, T., Sader, J.E., Nakayama, Y., and Jarvis, S.P.: Structured water layers adjacent to biological membranes. Biophys. J. 91, 25322542 (2006).CrossRefGoogle ScholarPubMed
Lv, W.Q., He, W.D., Wang, X.N., Niu, Y.H., Cao, H.Q., Dickerson, J.H., and Wang, Z.G.: Understanding the oriented-attachment growth of nanocrystals from an energy point of view: A review. Nanoscale 6, 25312547 (2014).CrossRefGoogle ScholarPubMed
Hopkins, J.C., Podgornik, R., Ching, W.Y., French, R.H., and Parsegian, V.A.: Disentangling the effects of shape and dielectric response in van der Waals interactions between anisotropic bodies. J. Phys. Chem. C 119, 1908319094 (2015).CrossRefGoogle Scholar
Schoche, S., Hofmann, T., Korlacki, R., Tiwald, T.E., and Schubert, M.: Infrared dielectric anisotropy and phonon modes of rutile TiO2. J. Appl. Phys. 113, 164102 (2013).CrossRefGoogle Scholar
Gervais, F. and Piriou, B.: Temperature-dependence of transverse-optic and longitudinal-optic modes in TiO2 (rutile). Phys. Rev. B 10, 16421654 (1974).CrossRefGoogle Scholar
Gervais, F. and Piriou, B.: Anharmonicity in several-polar-mode crystals—Adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivity. J. Phys. C: Solid State Phys. 7, 23742386 (1974).CrossRefGoogle Scholar
Bergstrom, L.: Hamaker constants of inorganic materials. Adv. Colloid Interface Sci. 70, 125169 (1997).CrossRefGoogle Scholar
Parsegian, V.A.: Van der Waals Forces (Cambridge University Press, New York, NY, 2006).Google Scholar
Erts, D., Lohmus, A., Lohmus, R., Olin, H., Pokropivny, A.V., Ryen, L., and Svensson, K.: Force interactions and adhesion of gold contacts using a combined atomic force microscope and transmission electron microscope. Appl. Surf. Sci. 188, 460466 (2002).CrossRefGoogle Scholar
Yasui, K. and Kato, K.: Oriented attachment of cubic or spherical BaTiO3 nanocrystals by van der Waals torque. J. Phys. Chem. C 119, 2459724605 (2015).CrossRefGoogle Scholar
Liao, H.G., Cui, L.K., Whitelam, S., and Zheng, H.M.: Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 10111014 (2012).CrossRefGoogle ScholarPubMed
Kresse, G., Dulub, O., and Diebold, U.: Competing stabilization mechanism for the polar ZnO(0001)–Zn surface. Phys. Rev. B 68, 245409 (2003).CrossRefGoogle Scholar
Martins, J.B.L., Moliner, V., Andres, J., Longo, E., and Taft, C.A.: A theoretical-study of water-adsorption on $\left( {10\bar{1}0} \right)$ and (0001) Zno surfaces—Molecular cluster, basis-set and effective core potential dependence. J. Mol. Struct.: THEOCHEM 330, 347351 (1995).CrossRefGoogle Scholar
Onsten, A., Stoltz, D., Palmgren, P., Yu, S., Gothelid, M., and Karlsson, U.O.: Water adsorption on ZnO(0001): Transition from triangular surface structures to a disordered hydroxyl terminated phase. J. Phys. Chem. C 114, 1115711161 (2010).CrossRefGoogle Scholar
Rodriguez, J.A. and Campbell, C.T.: A quantum-chemical study of the adsorption of water, formaldehyde and ammonia on copper surfaces and water on ZnO(0001). Surf. Sci. 197, 567593 (1988).CrossRefGoogle Scholar
Schiek, M., Al-Shamery, K., Kunat, M., Traeger, F., and Woll, C.: Water adsorption on the hydroxylated H–(1 × 1)O–ZnO(0001) surface. Phys. Chem. Chem. Phys. 8, 15051512 (2006).CrossRefGoogle ScholarPubMed
Wahl, R., Lauritsen, J.V., Besenbacher, F., and Kresse, G.: Stabilization mechanism for the polar ZnO$\left( {000\bar{1}} \right)$–O surface. Phys. Rev. B 87, 085313 (2013).CrossRefGoogle Scholar
Xu, H., Dong, L., Shi, X.Q., Van Hove, M.A., Ho, W.K., Lin, N., Wu, H.S., and Tong, S.Y.: Stabilizing forces acting on ZnO polar surfaces: STM, LEED, and DFT. Phys. Rev. B 89, 235403 (2014).CrossRefGoogle Scholar
Ye, H.G., Chen, G.D., Niu, H.B., Zhu, Y.Z., Shao, L., and Qiao, Z.J.: Structures and mechanisms of water adsorption on ZnO(0001) and GaN(0001) surface. J. Phys. Chem. C 117, 1597615983 (2013).CrossRefGoogle Scholar
Mora-Fonz, D., Lazauskas, T., Farrow, M.R., Catlow, C.R.A., Woodley, S.M., and Sokol, A.A.: Why are polar surfaces of ZnO stable? Chem. Mater. 29, 53065320 (2017).CrossRefGoogle Scholar
Pacholski, C., Kornowski, A., and Weller, H.: Self-assembly of ZnO: From nanodots, to nanorods. Angew. Chem., Int. Ed. 41, 11881191 (2002).3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Fan, B.L., Zhang, Y.M., Yan, R.L., and Fan, J.Y.: Multistage growth of monocrystalline ZnO nanowires and twin-nanorods: Oriented attachment and role of the spontaneous polarization force. CrystEngComm 18, 64926501 (2016).CrossRefGoogle Scholar
Zhang, H.Z. and Banfield, J.F.: Interatomic Coulombic interactions as the driving force for oriented attachment. CrystEngComm 16, 15681578 (2014).CrossRefGoogle Scholar
Derjaguin, B. and Landau, L.: Theory of stability of highly charged lyophobic sols and adhesion of highly charged particles in solutions of electrolytes. Zh Eksp Teor Fiz 15, 663682 (1945).Google Scholar
Verwey, E.J.W.: Theory of the stability of lyophobic colloids. Philips Res. Rep. 1, 3349 (1945).Google Scholar
Verwey, E.J.W.: Theory of the stability of lyophobic colloids. J. Phys. Colloid Chem. 51, 631636 (1947).CrossRefGoogle ScholarPubMed
Shubin, V.E. and Kekicheff, P.: Electrical double-layer structure revisited via a surface force apparatus—Mica interfaces in lithium-nitrate solutions. J. Colloid Interface Sci. 155, 108123 (1993).CrossRefGoogle Scholar
Kim, H.K., Tuite, E., Norden, B., and Ninham, B.W.: Co-ion dependence of DNA nuclease activity suggests hydrophobic cavitation as a potential source of activation energy. Eur. Phys. J. E 4, 411417 (2001).CrossRefGoogle Scholar
Bostrom, M., Williams, D.R.M., and Ninham, B.W.: Specific ion effects: Why DLVO theory fails for biology and colloid systems. Phys. Rev. Lett. 87, 168103 (2001).CrossRefGoogle ScholarPubMed
Dubois, M., Zemb, T., Fuller, N., Rand, R.P., and Parsegian, V.A.: Equation of state of a charged bilayer system: Measure of the entropy of the lamellar–lamellar transition in DDABr (vol 108, pg 7855, 1998). J. Chem. Phys. 109, 8731 (1998).CrossRefGoogle Scholar
Dubois, M., Zemb, T., Fuller, N., Rand, R.P., and Parsegian, V.A.: Equation of state of a charged bilayer system: Measure of the entropy of the lamellar–lamellar transition in DDABr. J. Chem. Phys. 108, 78557869 (1998).CrossRefGoogle Scholar
Pashley, R.M., Mcguiggan, P.M., Ninham, B.W., Brady, J., and Evans, D.F.: Direct measurements of surface forces between bilayers of double-chained quaternary ammonium acetate and bromide surfactants. J. Phys. Chem. 90, 16371642 (1986).CrossRefGoogle Scholar
Burrows, N.D., Hale, C.R.H., and Penn, R.L.: Effect of pH on the kinetics of crystal growth by oriented aggregation. Cryst. Growth Des. 13, 33963403 (2013).CrossRefGoogle Scholar
Penn, R.L. and Banfield, J.F.: Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochim. Cosmochim. Acta 63, 15491557 (1999).CrossRefGoogle Scholar
Burrows, N.D., Hale, C.R.H., and Penn, R.L.: Effect of ionic strength on the kinetics of crystal growth by oriented aggregation. Cryst. Growth Des. 12, 47874797 (2012).CrossRefGoogle Scholar
Pashley, R.M. and Israelachvili, J.N.: Molecular layering of water in thin-films between mica surfaces and its relation to hydration forces. J. Colloid Interface Sci. 101, 511523 (1984).CrossRefGoogle Scholar
Spagnoli, D., Gilbert, B., Waychunas, G.A., and Banfield, J.F.: Prediction of the effects of size and morphology on the structure of water around hematite nanoparticles. Geochim. Cosmochim. Acta 73, 40234033 (2009).CrossRefGoogle Scholar
Zhang, H.Z., De Yoreo, J.J., and Banfield, J.F.: A unified description of attachment-based crystal growth. ACS Nano 8, 65266530 (2014).CrossRefGoogle ScholarPubMed
Raju, M., van Duin, A.C.T., and Fichthorn, K.A.: Mechanisms of oriented attachment of TiO2 nanocrystals in vacuum and humid environments: Reactive molecular dynamics. Nano Lett. 14, 18361842 (2014).CrossRefGoogle ScholarPubMed
Mcguiggan, P.M. and Israelachvili, J.N.: Adhesion and short-range forces between surfaces. 2. Effects of surface lattice mismatch. J. Mater. Res. 5, 22322243 (1990).CrossRefGoogle Scholar
Mcguiggan, P.M. and Israelachvili, J.N.: Measurements of the effect of angular lattice mismatch on the adhesion energy between two mica surfaces in water. MRS Online Proc. Libr. 138, 349 (2011).CrossRefGoogle Scholar
Alcantar, N., Israelachvili, J., and Boles, J.: Forces and ionic transport between mica surfaces: Implications for pressure solution. Geochim. Cosmochim. Acta 67, 12891304 (2003).CrossRefGoogle Scholar
Tan, Q.Y., Zhao, G.T., Qiu, Y.H., Kan, Y.J., Ni, Z.H., and Chen, Y.F.: Experimental observation of the ion–ion correlation effects on charge inversion and strong adhesion between mica surfaces in aqueous electrolyte solutions. Langmuir 30, 1084510854 (2014).CrossRefGoogle ScholarPubMed
Pincus, P.A. and Safran, S.A.: Charge fluctuations and membrane attractions. Europhys. Lett. 42, 103108 (1998).CrossRefGoogle Scholar
Manning, G.S.: Counterion condensation theory of attraction between like charges in the absence of multivalent counterions. Eur. Phys. J. E 34, 132 (2011).CrossRefGoogle ScholarPubMed
Giberti, F., Salvalaglio, M., and Parrinello, M.: Metadynamics studies of crystal nucleation IUCrJ 2, 256266 (2015).Google Scholar
Raiteri, P. and Gale, J.D.: Water is the key to nonclassical nucleation of amorphous calcium carbonate. J. Am. Chem. Soc. 132, 1762317634 (2010).CrossRefGoogle ScholarPubMed
Demichelis, R., Raiteri, P., Gale, J.D., Quigley, D., and Gebauer, D.: Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat. Commun. 2, 590 (2011).CrossRefGoogle ScholarPubMed
Wallace, A.F., Hedges, L.O., Fernandez-Martinez, A., Raiteri, P., Gale, J.D., Waychunas, G.A., Whitelam, S., Banfield, J.F., and De Yoreo, J.J.: Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science 341, 885889 (2013).CrossRefGoogle ScholarPubMed
Raiteri, P., Gale, J.D., Quigley, D., and Rodger, P.M.: Derivation of an accurate force-field for simulating the growth of calcium carbonate from aqueous solution: A new model for the calcite−water interface. J. Phys. Chem. C 114, 59976010 (2010).CrossRefGoogle Scholar
Lifanov, Y., Vorselaars, B., and Quigley, D.: Nucleation barrier reconstruction via the seeding method in a lattice model with competing nucleation pathways. J. Chem. Phys. 145, 211912 (2016).CrossRefGoogle Scholar
Zimmermann, N.E., Vorselaars, B., Quigley, D., and Peters, B.: Nucleation of NaCl from aqueous solution: Critical sizes, ion-attachment kinetics, and rates. J. Am. Chem. Soc. 137, 1335213361 (2015).CrossRefGoogle ScholarPubMed
Slater, B. and Quigley, D.: Crystal nucleation: Zeroing in on ice. Nat. Mater. 13, 670671 (2014).CrossRefGoogle ScholarPubMed
Smeets, P.J.M., Finney, A.R., Habraken, W., Nudelman, F., Friedrich, H., Laven, J., De Yoreo, J.J., Rodger, P.M., and Sommerdijk, N.: A classical view on nonclassical nucleation. Proc. Natl. Acad. Sci. U. S. A. 114, E7882E7890 (2017).CrossRefGoogle ScholarPubMed
Quigley, D., Freeman, C.L., Harding, J.H., and Rodger, P.M.: Sampling the structure of calcium carbonate nanoparticles with metadynamics. J. Chem. Phys. 134, 044703 (2011).CrossRefGoogle ScholarPubMed
Kawska, A., Brickmann, J., Kniep, R., Hochrein, O., and Zahn, D.: An atomistic simulation scheme for modeling crystal formation from solution. J. Chem. Phys. 124, 024513 (2006).CrossRefGoogle ScholarPubMed
Sear, R.P.: The non-classical nucleation of crystals: Microscopic mechanisms and applications to molecular crystals, ice and calcium carbonate. Int. Mater. Rev. 57, 328356 (2012).CrossRefGoogle Scholar
Gebauer, D., Kellermeier, M., Gale, J.D., Bergstrom, L., and Colfen, H.: Pre-nucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 43, 23482371 (2014).CrossRefGoogle ScholarPubMed
Mester, Z. and Panagiotopoulos, A.Z.: Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations. J. Chem. Phys. 142, 044507 (2015).CrossRefGoogle ScholarPubMed
Rosenfeld, Y.: Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 63, 980983 (1989).CrossRefGoogle ScholarPubMed
Kahl, G. and Lowen, H.: Classical density functional theory: An ideal tool to study heterogeneous crystal nucleation. J. Phys.: Condens. Matter 21, 464101 (2009).Google ScholarPubMed
Wu, J. and Li, Z.: Density-functional theory for complex fluids. Annu. Rev. Phys. Chem. 58, 85112 (2007).CrossRefGoogle ScholarPubMed
Oxtoby, D.W.: Homogeneous nucleation—Theory and experiment. J. Phys.: Condens. Matter 4, 76277650 (1992).Google Scholar
Sushko, M.L. and Rosso, K.M.: The origin of facet selectivity and alignment in anatase TiO2 nanoparticles in electrolyte solutions: Implications for oriented attachment in metal oxides. Nanoscale 8, 1971419725 (2016).CrossRefGoogle ScholarPubMed
Cho, K.S., Talapin, D.V., Gaschler, W., and Murray, C.B.: Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 127, 71407147 (2005).CrossRefGoogle ScholarPubMed
Boneschanscher, M.P., Evers, W.H., Geuchies, J.J., Altantzis, T., Goris, B., Rabouw, F.T., van Rossum, S.A.P., van der Zant, H.S.J., Siebbeles, L.D.A., Van Tendeloo, G., Swart, I., Hilhorst, J., Petukhov, A.V., Bals, S., and Vanmaekelbergh, D.: Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science 344, 13771380 (2014).CrossRefGoogle ScholarPubMed
Fichthorn, K.A.: Atomic-scale aspects of oriented attachment. Chem. Eng. Sci. 121, 1015 (2015).CrossRefGoogle Scholar
Israelachvili, J.: Intermolecular and Surface Forces (Academic Press, New York, 1991).Google Scholar
Penn, R.L. and Soltis, J.A.: Characterizing crystal growth by oriented aggregation. CrystEngComm 16, 14091418 (2014).CrossRefGoogle Scholar
Xue, X.G., Penn, R.L., Leite, E.R., Huang, F., and Lin, Z.: Crystal growth by oriented attachment: Kinetic models and control factors. CrystEngComm 16, 14191429 (2014).CrossRefGoogle Scholar
Leikin, S., Parsegian, V.A., Rau, D.C., and Rand, R.P.: Hydration forces. Annu. Rev. Phys. Chem. 44, 369395 (1993).CrossRefGoogle ScholarPubMed
Schneck, E., Sedlmeier, F., and Netz, R.R.: Hydration repulsion between biomembranes results from an interplay of dehydration and depolarization. Proc. Natl. Acad. Sci. U. S. A. 109, 1440514409 (2012).CrossRefGoogle ScholarPubMed
Leng, Y.S.: Hydration force between mica surfaces in aqueous KCl electrolyte solution. Langmuir 28, 53395349 (2012).CrossRefGoogle ScholarPubMed
Wen, K.C. and He, W.D.: Can oriented-attachment be an efficient growth mechanism for the synthesis of 1D nanocrystals via atomic layer deposition? Nanotechnology 26, 382001 (2015).CrossRefGoogle ScholarPubMed
Lu, C.G. and Tang, Z.Y.: Advanced inorganic nanoarchitectures from oriented self-assembly. Adv. Mater. 28, 10961108 (2016).CrossRefGoogle ScholarPubMed