Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T11:08:50.277Z Has data issue: false hasContentIssue false

Ultrafine-grained Ti66Nb13Cu8Ni6.8Al6.2 composites fabricated by spark plasma sintering and crystallization of amorphous phase

Published online by Cambridge University Press:  31 January 2011

Y.Y. Li*
Affiliation:
School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
S.G. Qu
Affiliation:
School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report on the formation of ultrafine-grained Ti66Nb13Cu8Ni6.8Al6.2 composites with in situ precipitated micrometer-sized β-Ti(Nb) phase by spark plasma sintering with crystallization. Microstructure analysis indicated that all alloys consisted of soft (Cu, Ni)Ti2 regions surrounded by hard β-Ti(Nb) regions but displayed different microstructures. The alloys exhibited high fracture strength of more than 2200 MPa and remarkable plasticity of ∼25%. The results provided a promising method for fabricating large-sized bulk composites with excellent mechanical properties by powder metallurgy.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Eckert, J., Das, J., Pauly, S., and Duhamel, C.: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 (2007)CrossRefGoogle Scholar
2Kim, K.B., Das, J., Xu, W., Zhang, Z.F., and Eckert, J.: Microscopic deformation mechanism of a Ti66.1Nb13.9Ni4.8Cu8Sn7.2 nanostructure-dendrite composite. Acta Mater. 54, 3701 (2006)CrossRefGoogle Scholar
3Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.Q., Pan, M.X., and Wang, W.H.: Super plastic bulk metallic glasses at room temperature. Science 315, 1385 (2007)CrossRefGoogle ScholarPubMed
4He, G., Eckert, J., Löser, W., and Schultz, L.: Novel Ti-base nanostructure–dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003)CrossRefGoogle ScholarPubMed
5Kühn, U., Mattern, N., Gebert, A., Kusy, M., Boström, M., Siegel, U., and Schultz, L.: Nanostructured Zr and Ti-based composite materials with high strength and enhanced plasticity. J. Appl. Phys. 98, 054307 (2005)CrossRefGoogle Scholar
6Hofmann, D.C., Suh, J.Y., Wiest, A., Duan, G., Lind, M.L., Demetriou, M.D., and Johnson, W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nat. Mater. 451, 1085 (2008)Google ScholarPubMed
7Lu, K.: Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties. Mater. Sci. Eng., R 16, 161 (1996)CrossRefGoogle Scholar
8Pekarskaya, E., Kim, C.P., and Johnson, W.L.: In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. J. Mater. Res. 16, 2513 (2001)CrossRefGoogle Scholar
9Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005)CrossRefGoogle ScholarPubMed
10Lewandowski, J.J. and Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006)CrossRefGoogle Scholar
11Xie, G.Q., Louzguine-Luzgin, D.V., Kimura, H., Inoue, A., and Wakai, F.: Large-size ultrahigh strength Ni-based bulk metallic glassy matrix composites with enhanced ductility fabricated by spark plasma sintering. Appl. Phys. Lett. 92, 121907 (2008)CrossRefGoogle Scholar
12Bae, D.H., Lee, M.H., Kim, D.H., and Sordelet, D.J.: Plasticity in Ni59Zr20Ti16Si2Sn3 metallic glass matrix composites containing brass fibers synthesized by warm extrusion of powders. Appl. Phys. Lett. 83, 2312 (2003)CrossRefGoogle Scholar
13Zhang, L.C., Xu, J., and Ma, E.: Consolidation and properties of ball-milled Ti50Cu18Ni22Al4Sn6 glassy alloy by equal channel angular extrusion. Mater. Sci. Eng., A 434, 280 (2006)CrossRefGoogle Scholar
14Eckert, J., Reger-Leonhard, A., Weiβ, B., Heilmaier, M., and Schultz, L.: Bulk nanostructured multicomponent alloys. Adv. Eng. Mater. 3, 41 (2001)3.0.CO;2-S>CrossRefGoogle Scholar
15Li, Y.Y., Yang, C., Chen, W.P., and Li, X.Q.: Effect of WC content on glass formation, thermal stability, and phase evolution of a TiNbCuNiAl alloy synthesized by mechanical alloying. J. Mater. Res. 23, 745 (2008)CrossRefGoogle Scholar
16Tokita, M.: Trends in advanced SPS spark plasma sintering system and technology. J. Soc. Powder Technol. Jpn. 30, 790 (1993)CrossRefGoogle Scholar
17Cullity, B.D.: Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978), pp. 102 and 356.Google Scholar
18Gouldstone, A., Koh, H.J., Zeng, K.Y., Giannakopoulos, A.E., and Suresh, S.: Discrete and continuous deformation during nano-indentation of thin films. Acta Mater. 48, 2277 (2000)CrossRefGoogle Scholar
19Yang, B. and Nieh, T.G.: Effect of the nanoindentation rate on the shear band formation in an Au-based bulk metallic glass. Acta Mater. 55, 295 (2007)CrossRefGoogle Scholar
20Tabor, D.: The Hardness of Metals (Oxford University Press, New York, 1951).Google Scholar