Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T01:38:23.326Z Has data issue: false hasContentIssue false

Ultrafiltration performance and fouling resistance of PVB/SPES blend membranes with different degree of sulfonation

Published online by Cambridge University Press:  18 August 2015

Shuhong Jiang
Affiliation:
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
Jun Wang*
Affiliation:
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
Jun Wu
Affiliation:
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
Hongzhong Zhou
Affiliation:
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
Chuanwei Jiang
Affiliation:
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In the present study, we investigated the effects of different degree of sulfonation (DS) on the performance of the poly (vinyl butyral)/sulfonated polyethersulfone (PVB/SPES) blend membranes. The compatibility of the PVB/SPES blending system was characterized by shear viscosity and Fourier transform infrared attenuated total reflection, respectively. Results stated that all PVB/SPES blending systems were partially compatible. Contact angle, equilibrium water content, and x-ray photoelectron spectroscopy measurements were carried out to investigate the hydrophilicity of the PVB/SPES blend membranes. With increasing DS, the blend membranes became more hydrophilic. The pure water flux of the blend membranes increased with DS, while the rejection decreased due to microstructures of the PVB/SPES membranes. The mechanical properties of the PVB/SPES blend membranes increased slightly with DS. Fouling resistances of blend membranes evaluated by bovine serum albumin solution filtration revealed the PVB/SPES blend membranes with DS = 27% exhibited the superior antifouling properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Le-Clech, P., Chen, V., and Fane, T.A.G.: Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 284, 17 (2006).CrossRefGoogle Scholar
Lewis, R., Nothrop, S., Chow, C.W.K., Everson, A., and van Leeuwen, J.A.: Colour formation from pre and post-coagulation treatment of Pinus radiata sulfite pulp mill wastewater using nutrient limited aerated stabilisation basins. Sep. Purif. Technol. 114, 1 (2013).CrossRefGoogle Scholar
Taniguchi, M. and Belfort, G.: Low protein fouling synthetic membranes by UV-assisted surface grafting modification: Varying monomer type. J. Membr. Sci. 231, 147 (2004).CrossRefGoogle Scholar
Aydiner, C.: A novel approach based on distinction of actual and pseudo resistances in membrane fouling: “Pseudo resistance” concept and its implementation in nanofiltration of single solutions. J. Membr. Sci. 361, 96 (2010).CrossRefGoogle Scholar
Van der Bruggen, B., Mänttäri, M., and Nyström, M.: Drawbacks of applying nanofiltration and how to avoid them: A review. Sep. Purif. Technol. 63, 251 (2008).CrossRefGoogle Scholar
Qiu, Y., Qi, J., and Wei, Y.: Synergistic action of non-solvent induced phase separation in preparation of poly (vinyl butyral) hollow fiber membrane via thermally induced phase separation. J. Cent. South. Univ. 21, 2184 (2014).CrossRefGoogle Scholar
Lonsdale, H.K.: The growth of membrane technology. J. Membr. Sci. 10, 81 (1982).CrossRefGoogle Scholar
Tutunjian, R.S.: Ultrafiltration processes in biotechnology. Ann. N. Y. Acad. Sci. 413, 238 (1983).CrossRefGoogle ScholarPubMed
Qiu, Y., Hideto, M., Zhong, H., Ye, H., and Huang, K.: Effects of F127 on properties of PVB/F127 blend hollow fiber membrane via thermally induced phase separation. Chin. J. Chem. Eng. 18, 207 (2010).CrossRefGoogle Scholar
Qiu, Y.R. and Matsuyama, H.: Preparation and characterization of poly (vinyl butyral) hollow fiber membrane via thermally induced phase separation with diluent polyethylene glycol 200. Desalination 257, 117 (2010).CrossRefGoogle Scholar
Dhaliwal, A.K. and Hay, J.N.: The characterization of polyvinyl butyral by thermal analysis. Thermochim. Acta. 391, 245 (2002).CrossRefGoogle Scholar
Fu, X., Matsuyama, H., Teramoto, M., and Nagai, H.: Preparation of polymer blend hollow fiber membrane via thermally induced phase separation. Sep. Purif. Technol. 52, 363 (2006).CrossRefGoogle Scholar
Yan, L. and Wang, J.: Development of a new polymer membrane—PVB/PVDF blended membrane. Desalination 281, 455 (2011).CrossRefGoogle Scholar
Kim, J.H. and Kim, C.K.: Ultrafiltration membranes prepared from blends of polyethersulfone and poly (1-vinylpyrrolidone-co-styrene) copolymers. J. Membr. Sci. 262, 60 (2005).CrossRefGoogle Scholar
Ulbricht, M., Schuster, O., Ansorge, W., Ruetering, M., and Steiger, P.: Influence of the strongly anisotropic cross-section morphology of a novel polyethersulfone microfiltration membrane on filtration performance. Sep. Purif. Technol. 57, 63 (2007).CrossRefGoogle Scholar
Ma, X., Su, Y., Sun, Q., Wang, Y., and Jiang, Z.: Enhancing the antifouling property of polyethersulfone ultrafiltration membranes through surface adsorption-crosslinking of poly (vinyl alcohol). J. Membr. Sci. 300, 71 (2007).CrossRefGoogle Scholar
Moghimifar, V., Raisi, A., and Aroujalian, A.: Surface modification of polyethersulfone ultrafiltration membranes by corona plasma-assisted coating TiO2 nanoparticles. J. Membr. Sci. 461, 69 (2014).CrossRefGoogle Scholar
Peng, J., Su, Y., Shi, Q., Chen, W., and Jiang, Z.: Protein fouling resistant membrane prepared by amphiphilic pegylated polyethersulfone. Bioresour. Technol. 102, 2289 (2011).CrossRefGoogle ScholarPubMed
Yune, P.S., Kilduff, J.E., and Belfort, G.: Using co-solvents and high throughput to maximize protein resistance for poly (ethylene glycol)-grafted poly (ether sulfone) UF membranes. J. Membr. Sci. 370, 166 (2011).CrossRefGoogle Scholar
Mahendran, R., Malaisamy, R., and Mohan, D.R.: Cellulose acetate and polyethersulfone blend ultrafiltration membranes. Part I: Preparation and characterizations. Polym. Advan. Technol. 15, 149 (2004).CrossRefGoogle Scholar
Wang, Y., Wang, T., Su, Y., Peng, F., Wu, H., and Jiang, Z.: Protein-adsorption-resistance and permeation property of polyethersulfone and soybean phosphatidylcholine blend ultrafiltration membranes. J. Membr. Sci. 270, 108 (2006).CrossRefGoogle Scholar
Rahimpour, A. and Madaeni, S.S.: Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: Preparation, morphology, performance and antifouling properties. J. Membr. Sci. 305, 299 (2007).CrossRefGoogle Scholar
Gao, Y., Robertson, G.P., Guiver, M.D., Jian, X., Mikhailenko, S.D., Wang, K., and Kaliaguine, S.: Sulfonation of poly (phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials. J. Membr. Sci. 227, 39 (2003).CrossRefGoogle Scholar
Klaysom, C., Ladewig, B.P., Lu, G.Q., and Wang, L.: Preparation and characterization of sulfonated polyethersulfone for cation-exchange membranes. J. Membr. Sci. 368, 48 (2011).CrossRefGoogle Scholar
Kang, M.S., Choi, Y.J., Choi, I.J., Yoon, T.H., and Moon, S.H.: Electrochemical characterization of sulfonated poly (arylene ether sulfone) (S-PES) cation-exchange membranes. J. Membr. Sci. 216, 39 (2003).CrossRefGoogle Scholar
Guan, R., Zou, H., Lu, D., Gong, C., and Liu, Y.: Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics. Eur. Polym. J. 41, 1554 (2005).CrossRefGoogle Scholar
Zhao, W., Mou, Q., Zhang, X., Shi, J., Sun, S., and Zhao, C.: Preparation and characterization of sulfonated polyethersulfone membranes by a facile approach. Eur. Polym. J. 49, 738 (2013).CrossRefGoogle Scholar
Gao, Y., Robertson, G.P., Guiver, M.D., and Jian, X.: Synthesis and characterization of sulfonated poly (phthalazinone ether ketone) for proton exchange membrane materials. J. Polym. Sci. Pol. Chem. 41, 497 (2003).CrossRefGoogle Scholar
Nolte, R., Ledjeff, K., Bauer, M., and Mülhaupt, R.: Partially sulfonated poly (arylene ether sulfone)-A versatile proton conducting membrane material for modern energy conversion technologies. J. Membr. Sci. 83, 211 (1993).CrossRefGoogle Scholar
Daraei, P., Madaeni, S.S., Ghaemi, N., Khadivi, M.A., Astinchap, B., and Moradian, R.: Fouling resistant mixed matrix polyethersulfone membranes blended with magnetic nanoparticles: Study of magnetic field induced casting. Sep. Purif. Technol. 109, 111 (2013).CrossRefGoogle Scholar
Arthanareeswaran, G., Sriyamuna Devi, T.K., and Raajenthiren, M.: Effect of silica particles on cellulose acetate blend ultrafiltration membranes: Part I. Sep. Purif. Technol. 64, 38 (2008).CrossRefGoogle Scholar
Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S., and Astinchap, B.: Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep. Purif. Technol. 90, 69 (2012).CrossRefGoogle Scholar
Pieracci, J., Crivello, J.V., and Belfort, G.: Increasing membrane permeability of UV-modified poly (ether sulfone) ultrafiltration membranes. J. Membr. Sci. 202, 1 (2002).CrossRefGoogle Scholar
Lawrence, J. and Yamaguchi, T.: The degradation mechanism of sulfonated poly (arylene ether sulfone)s in an oxidative environment. J. Membr. Sci. 325, 633 (2008).CrossRefGoogle Scholar
Kuleznev, V.N., Melnikova, O.L., and Klykova, V.D.: Dependence of modulus and viscosity upon composition for mixtures of polymers. Effects of phase composition and properties of phases. Eur. Polym. J. 14, 455 (1978).CrossRefGoogle Scholar
Singh, Y.P. and Singh, R.P.: Compatibility studies on solutions of polymer blends by viscometric and ultrasonic techniques. Eur. Polym. J. 19, 535 (1983).CrossRefGoogle Scholar
Li, Y.: Research of Solution Blending in Modification of PVDF Membrane (Donghua University, Shanghai, China, 2012).Google Scholar
Mu, C., Su, Y., Sun, M., Chen, W., and Jiang, Z.: Remarkable improvement of the performance of poly (vinylidene fluoride) microfiltration membranes by the additive of cellulose acetate. J. Membr. Sci. 350, 293 (2010).CrossRefGoogle Scholar
Su, Y., Li, C., Zhao, W., Shi, Q., Wang, H., Jiang, Z., and Zhu, S.: Modification of polyethersulfone ultrafiltration membranes with phosphorylcholine copolymer can remarkably improve the antifouling and permeation properties. J. Membr. Sci. 332, 171 (2008).CrossRefGoogle Scholar
Vatanpour, V., Madaeni, S.S., Rajabi, L., Zinadini, S., and Derakhshan, A.A.: Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes. J. Membr. Sci. 401, 132 (2012).CrossRefGoogle Scholar
Ishihara, K.: Bioinspired phospholipid polymer biomaterials for making high performance artificial organs. Sci. Technol. Adv. Mat. 1, 131 (2000).CrossRefGoogle Scholar
Lu, J.R., Murphy, E.F., Su, T.J., Lewis, A.L., Stratford, P.W., and Satija, S.K.: Reduced protein adsorption on the surface of a chemically grafted phospholipid monolayer. Langmuir 17, 3382 (2001).CrossRefGoogle Scholar
Kochkodan, V. and Hilal, N.A.: comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 356, 187 (2015).CrossRefGoogle Scholar
Al-Amoudi, A. and Lovitt, R.W.: Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J. Membr. Sci. 303, 4 (2007).CrossRefGoogle Scholar