Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T06:21:23.305Z Has data issue: false hasContentIssue false

Ultrafast self-catalytic growth of silicon carbide nanowires

Published online by Cambridge University Press:  12 December 2011

Andrzej Huczko*
Affiliation:
Laboratory of Physics and Chemistry of Nanomaterials, Faculty of Chemistry, Warsaw University, 02-093 Warsaw, Poland
Agnieszka Dąbrowska
Affiliation:
Laboratory of Physics and Chemistry of Nanomaterials, Faculty of Chemistry, Warsaw University, 02-093 Warsaw, Poland
Michał Soszyński
Affiliation:
Laboratory of Physics and Chemistry of Nanomaterials, Faculty of Chemistry, Warsaw University, 02-093 Warsaw, Poland
Natalia Maryan
Affiliation:
Laboratory of Physics and Chemistry of Nanomaterials, Faculty of Chemistry, Warsaw University, 02-093 Warsaw, Poland
Michał Bystrzejewski
Affiliation:
Laboratory of Physics and Chemistry of Nanomaterials, Faculty of Chemistry, Warsaw University, 02-093 Warsaw, Poland
Piotr Baranowski
Affiliation:
Laboratory of Physics and Chemistry of Nanomaterials, Faculty of Chemistry, Warsaw University, 02-093 Warsaw, Poland
Hubert Lange
Affiliation:
Laboratory of Physics and Chemistry of Nanomaterials, Faculty of Chemistry, Warsaw University, 02-093 Warsaw, Poland
Thomas Gemming
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, D-01171 Dresden, Germany
Alicja Bachmatiuk
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, D-01171 Dresden, Germany
Mark Rümmeli
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, D-01171 Dresden, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Silicon carbide nanowires (SiCNWs) (with diameters of tens of nanometer and aspect ratio well above 103), consisting of β-SiC one-dimensional single crystals wrapped in amorphous nitrogen-containing SiO2 sheaths, were efficiently synthesized in gram quantities by autogenous combustion synthesis using Si as a defluorination reagent of poly(tetrafluoroethylene). The combustion temperature was evaluated using the emission spectroscopy. Vapor–liquid–solid mechanism of a self-catalytic growth of the SiCNWs is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schoen, D.T., Schoen, A.P., Hu, L., Kim, H.S., Heilshorn, S.C., and Cui, Y.: High speed water sterilization using one-dimensional nanostructures. Nano Lett. 10, 3628 (2010).Google Scholar
2.Jung, Y., Lee, S-H., Ko, D-K., and Agarwal, K.: Synthesis and characterization of Ge2Sb2Te5 nanowires with memory switching effect. J. Am. Chem. Soc. 128, 14026 (2006).Google Scholar
3.Pol, V.G., Pol, S.V., and Gedanken, A.: Novel synthesis of high surface area silicon carbide by RAPET (reactions under autogenic pressure at elevated temperature) of organosilanes. Chem. Mater. 17, 1797 (2005).Google Scholar
4.Cao, Q. and Rogers, J.A.: Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 21, 29 (2009).Google Scholar
5.Yermekova, Z., Mansurov, Z., and Mukasyan, A.: Influence of precursor morphology on the microstructure of silicon carbide nanopowder produced by combustion syntheses. Ceram. Int. 36, 2297 (2010).Google Scholar
6.Huczko, A., Lange, H., Chojecki, G., Cudziło, S., Zhu, Y.-Q., Kroto, H.W., and Walton, D.R.M.: Synthesis of novel nanostructures by metal-polytetrafluoroethylene thermolysis. J. Phys. Chem. B 107, 2519 (2003).Google Scholar
7.Huczko, A., Bystrzejewski, M., Lange, H., Fabianowska, A., Cudziło, S., Panas, A.J., and Szala, M.: Combustion synthesis as a novel method for production of 1-D SiC nanostructures. J. Phys. Chem. B 109, 16244 (2005).CrossRefGoogle ScholarPubMed
8.Qadri, S.B., Iman, M.A., Feng, C.R., Rath, B.B., Yousuf, M., and Singh, S.K.: Characteristics of plasma processed SiC nanocrystallites and nanorods. Appl. Phys. Lett. 83, 548 (2003).Google Scholar
9.Huczko, A., Lange, H., Bystrzejewski, M., Rümmeli, M.H., Gemming, T., and Cudziło, S.: Studies on spontaneous formation of 1D nanocrystals of silicon carbide. Cryst. Res. Technol. 40, 334 (2005).CrossRefGoogle Scholar
10.Zhu, Y.Q., Hu, W.B., Hsu, W.K., Terrones, M., Grobert, N., Hare, J.P., Kroto, H.W., Walton, D.R.M., and Terrones, H.: SiC-SiO(x) heterojunctions in nanowires. J. Mater. Chem. 9, 3173 (1999).Google Scholar
11.Narayan, J., Raghunathan, R., Chowdhury, R., and Jagannadham, K.: Mechanism of combustion synthesis of silicon carbide. J. Appl. Phys. 75, 7252 (1994).Google Scholar
12.Rümmeli, M.H., Adebimpe, D.B., Borowiak-Palen, E., Gemming, T., Ayala, P., Iaonnides, N., Pichler, T., Huczko, A., Cudziło, S., Knupfer, M., and Büchner, B.: Hydrogen activated axial inter-conversion in SiC nanowires. J. Solid State Chem. 182, 602 (2009).Google Scholar
13.Belmonte, T., Bonnetain, L., and Ginoux, J.L.: Synthesis of silicon carbide whiskers using the vapor-liquid-solid mechanism in a silicon-rich droplet. J. Mater. Sci. 31, 2367 (1996).Google Scholar
14.Watanabe, N., Koyama, S., and Imoto, H.: Thermal decomposition of graphite fluoride. I. Decomposition products of graphite fluoride, (CF)n in a vacuum. Bull. Chem. Soc. Jpn. 53, 2731 (1980).CrossRefGoogle Scholar
15.Huczko, A., Li, R., and Boulos, M.I.: Silicon tetrafluoride synthesis in a rotary plasma reactor. High Temp. Chem. Processes 2, 449 (1993).Google Scholar
16.Niu, J.J. and Nong Wang, J.: Synthesis of macroscopic SiC nanowires at the gram level and their electrochemical activity with Pt loadings. Acta Mater. 57, 3084 (2009).CrossRefGoogle Scholar
17.Chen, J.J., Pan, Y., Tang, W.H., and Shi, Q.: Tuning the morphologies of SiC nanowires via the change of the CoxSiy melts. Nano-Micro Lett. 2, 11 (2010).CrossRefGoogle Scholar
18.Gao, F., Yang, W., Fan, Y., and An, L.: Aligned ultra-long single-crystalline α-Si3N4 nanowires. Nanotechnology 19, 1 (2008).Google Scholar
19.Busiakiewicz, A., Huczko, A., Dudziak, T., Puchalski, M., Kozłowski, W., Cichomski, M., Cudziło, S., Klusek, Z., and Olejniczak, W.: Defects of SiC nanowires studied by STM and STS. Appl. Surf. Sci. 256, 4771 (2010).Google Scholar