Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T12:43:38.042Z Has data issue: false hasContentIssue false

Two kinds of roles of MgO in the densification and grain growth of alumina under various atmospheres: Sensitive and insensitive roles to the experimental procedures

Published online by Cambridge University Press:  31 January 2011

Takayasu Ikegami
Affiliation:
National Institute for Research in Inorganic Materials 1-1, Namiki, Tsukuba-shi, Ibaraki, 305 Japan
Katsuya Eguchi
Affiliation:
Dow Corning Asia Ltd., Research Center, 603, Kishi, Yamakita-machi Ashigarakami-gun, Kanagawa 258-01 Japan
Get access

Abstract

Two kinds of high-purity Al2O3 powder were studied with respect to the effects of not only MgO doping but also atmosphere on both densification and grain growth. Controversial results for MgO doping are explained in terms of two roles that MgO can play during these processes: sensitive and insensitive to the experimental procedures. Atmospheres, whether dry or wet, had little influence on densification or grain growth in the early stage. After closed pores appreciably formed, however, both N2 and Ar atmospheres quickly reduced the densification rate.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Coble, R. L., U.S. Pat. No. 3,026,210, March 20 (1962).Google Scholar
2.Jorgensen, P. J. and Westbrook, J. H., J. Am. Ceram. Soc. 47 (7), 332 (1964).CrossRefGoogle Scholar
3.Peelen, J. G. J., Mater. Sci. Res. 10, 443 (1975).Google Scholar
4.Heuer, A. H., J. Am. Ceram. Soc. 62 (5–6), 317 (1979).CrossRefGoogle Scholar
5.Brook, R. J., Proc. Br. Ceram. Soc. 32, 7 (1982).Google Scholar
6.Harmer, M. P., Roberts, E. W., and Brook, R. J., Trans. Br. Ceram. Soc. 78 (1), 22 (1979).Google Scholar
7.Greskovich, C. and Chernoch, J. P., J. Appl. Phys. 44 (10), 4599 (1973).CrossRefGoogle Scholar
8.Haertling, G. H. and Land, C. E., J. Am. Ceram. Soc. 54 (1), 1 (1971).CrossRefGoogle Scholar
9.Bratton, R. J., J. Am. Ceram. Soc. 56 (7), 283 (1974).CrossRefGoogle Scholar
10.Ikegami, T., Kotani, K., and Eguchi, K., J. Am. Ceram. Soc. 70 (12), 885 (1987).CrossRefGoogle Scholar
11.Johnson, W.C. and Coble, R. L., J. Am. Ceram. Soc. 61 (3–4), 110 (1978).CrossRefGoogle Scholar
12.Mendelson, M.I., J. Am. Ceram. Soc. 52 (8), 443 (1969).CrossRefGoogle Scholar
13.Porter, R.F., Chupka, W.A., and Inghram, M. G., J. Chem. Phys. 23 (7), 1347 (1995).CrossRefGoogle Scholar
14.Cannon, R.M., Rhodes, W.H., and Heuer, A.H., J. Am. Ceram. Soc. 63 (1–2), 46 (1980).CrossRefGoogle Scholar
15.Woolerey, J. L. and Bannister, M. J., J. Am. Ceram. Soc. 55 (8), 390 (1972).CrossRefGoogle Scholar
16.Ikegami, T., Jpn. J. Ceram. Soc. 96 (10), 1037 (1988).CrossRefGoogle Scholar
17.Anderson, P.J. and Morgan, P. L., Trans. Faraday Soc. 60, 930 (1964).CrossRefGoogle Scholar
18.Aitken, E.A., J. Am. Ceram. Soc. 43 (12), 627 (1960).CrossRefGoogle Scholar
19.Coble, R.L., J. Am. Ceram. Soc. 45 (3), 123 (1962).CrossRefGoogle Scholar
20.Hunderi, O., Ryum, N., and Westengen, H., Acta Metall. 27, 161 (1979).CrossRefGoogle Scholar
21.Shewmon, P.G., Trans. AIME 230 (10), 1134 (1964).Google Scholar
22.Nichols, F.A., J. Nucl. Mater. 30, 143 (1969).CrossRefGoogle Scholar
23.Greskovich, C. and Lay, K. W., J. Am. Ceram. Soc. 55 (3), 142 (1972).CrossRefGoogle Scholar
24.Berry, K.A. and Harmer, M. P., J. Am. Ceram. Soc. 69 (2), 143 (1986).CrossRefGoogle Scholar
25.Ready, D.W., Lee, J., and Quadir, T., in Sintering and Heterogeneous Catalysis, edited by Kuczynski, G.C., Miller, A.E., and Sargent, G.A. (Plenum Press, New York, 1984), Vol. 16, pp. 115136.Google Scholar
26.Zhao, J. and Harmer, M. P., J. Am. Ceram. Soc. 70 (12), 860 (1987).CrossRefGoogle Scholar
27.Brook, R.J., J. Am. Ceram. Soc. 52 (1), 56 (1969).CrossRefGoogle Scholar
28.Ikegami, T., Tsutsumi, M., Matsuda, S., Shirasaki, S., and Suzuki, H., J. Appl. Phys. 49 (7), 4238 (1978).CrossRefGoogle Scholar
29.Handwerker, C.A., Dynys, J.M., Cannon, R.M., and Coble, R.L., J. Am. Ceram. Soc. 73 (5), 1371 (1990).CrossRefGoogle Scholar
30.Sakaguchi, I., Srikanth, V., Ikegami, T., and Haneda, H., J. Am. Ceram. Soc. 78 (9), 2557 (1995).CrossRefGoogle Scholar
31.Oishi, Y. and Kinegery, W. D., J. Chem. Phys. 33 (2), 480 (1960).CrossRefGoogle Scholar
32.Reddy, K.P. R. and Cooper, A. R., J. Am. Ceram. Soc. 65 (12), 643 (1982).CrossRefGoogle Scholar
33.Reed, D.J. and Wuensch, B. J., J. Am. Ceram. Soc. 63 (1–2), 88 (1980).CrossRefGoogle Scholar
34.Haneda, H. and Monty, C., J. Am. Ceram. Soc. 72 (7), 1153 (1989).CrossRefGoogle Scholar
35.Lagerlof, K.P. D., Mitchell, T. E., and Heuer, A. H., J. Am. Ceram. Soc. 72 (11), 2159 (1989).CrossRefGoogle Scholar
36.Song, H. and Coble, R. L., J. Am. Ceram. Soc. 73 (7), 2077 (1990).CrossRefGoogle Scholar
37.Bae, S.K. and Baik, S., J. Am. Ceram. Soc. 77 (10), 2499 (1994).CrossRefGoogle Scholar