Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T19:33:29.823Z Has data issue: false hasContentIssue false

Tuning the electronic and magnetic properties of PEDOT-PSS-coated graphene oxide nanocomposites for biomedical applications

Published online by Cambridge University Press:  14 September 2020

Elison S. Ganya
Affiliation:
Department of Physics, College of Science, Engineering and Technology (CSET), University of South Africa, 1710Johannesburg, South Africa
Sabata J. Moloi
Affiliation:
Department of Physics, College of Science, Engineering and Technology (CSET), University of South Africa, 1710Johannesburg, South Africa
Sekhar C. Ray*
Affiliation:
Department of Physics, College of Science, Engineering and Technology (CSET), University of South Africa, 1710Johannesburg, South Africa
Way-Faung Pong*
Affiliation:
Department of Physics, Tamkang University, Taipei251301, Taiwan
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

We have synthesized graphene oxide (GO) using Hummer's method which was subsequently reduced (rGO) by hydrazine hydrate. The synthesized GO was coated with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) conducting polymer (CP) to obtain CP-GO which was also further reduced using hydrazine hydrate to form CP-rGO. Scanning electron microscopy, Raman spectroscopy, X-ray diffraction, ultraviolet photoelectron spectroscopy, and X-ray photoelectron spectroscopy, X-ray absorption near-edge structure (XANES) techniques were used to study the electronic and structural properties of GO, rGO, CP-GO, and CP-rGO nanocomposites for biomedical applications. The superconducting quantum interference device method was used to investigate the magnetic properties of the nanocomposites. The electrical conductivity of the CP-GO nanocomposites was found to be ~104 times higher than that of GO due to an increase in sp2 content and subsequent decrease in oxygen functional groups. In rGO, we observed an improved paramagnetic saturation magnetization of approximately 5.6 × 0−3 emu/g at 2 K. The electronic and magnetic behavior of PEDOT-PSS-coated nanocomposites, as a result, were successfully tuned for potential biological and biomedical applications.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., and Seal, S.: Graphene based materials: Past, present and future. Prog. Mater. Sci. 56, 1178 (2011).CrossRefGoogle Scholar
Yang, Y., Asiri, A.M., Tang, Z., Du, D., and Lin, Y.: Graphene based materials for biomedical applications. Mater. Today 16, 365 (2013).CrossRefGoogle Scholar
Weiss, N.O., Zhou, H., Liao, L., Liu, Y., Jiang, S., Huang, Y., and Duan, X.: Graphene: An emerging electronic material. Adv. Mater. 24, 5782 (2012).CrossRefGoogle ScholarPubMed
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S.: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 3906 (2010).CrossRefGoogle ScholarPubMed
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008).CrossRefGoogle ScholarPubMed
Shen, H., Zhang, L., Liu, M., and Zhang, Z.: Biomedical applications of graphene. Theranostics 2, 283 (2012).CrossRefGoogle ScholarPubMed
Naebe, M., Wang, J., Amini, A., Khayyam, H., Hameed, N., Li, L.H., Chen, Y., and Fox, B.: Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci. Rep. 4, 4375 (2014).CrossRefGoogle ScholarPubMed
Xuan, Y., Wu, Y.Q., Shen, T., Qi, M., Capano, M.A., Cooper, J.A., and Ye, P.D.: Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl. Phys. Lett. 92, 013101 (2008).CrossRefGoogle Scholar
Liu, C., Alwarappan, S., Chen, Z., Kong, X., and Li, C.Z.: Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens. Bioelectron. 25, 1829 (2010).CrossRefGoogle ScholarPubMed
Wang, L., Lee, K., Sun, Y.Y., Lucking, M., Chen, Z., Zhao, J.J., and Zhang, S.B.: Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 3, 2995 (2009).CrossRefGoogle ScholarPubMed
Lu, C-H., Yang, H-H., Zhu, C-L., Chen, X., and Chen, G-N.: A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. 48, 4785 (2009).CrossRefGoogle ScholarPubMed
Fan, H., Wang, L., Zhao, K., Li, N., Shi, Z., Ge, Z., and Jin, Z.: Fabrication, mechanical properties, and biocompatibility of graphene-reinforced Chitosan composites. Biomacromolecules 11, 2345 (2010).CrossRefGoogle ScholarPubMed
Feng, L. and Liu, Z.: Graphene in biomedicine: Opportunities and challenges. Nanomedicine 6, 317 (2011).CrossRefGoogle ScholarPubMed
Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., and Dai, H.: Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203 (2008).CrossRefGoogle ScholarPubMed
Liu, Y., Dong, X., and Chen, P.: Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41, 2283 (2012).CrossRefGoogle ScholarPubMed
Yang, K., Hu, L., Ma, X., Ye, S., Cheng, L., Shi, X., Li, C., Li, Y., and Liu, Z.: Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 24, 1868 (2012).CrossRefGoogle ScholarPubMed
Mornet, S., Vasseur, S., Grasset, F., and Duguet, E.: Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14, 2161 (2004).CrossRefGoogle Scholar
Pankhurst, Q.A., Connolly, J., Jones, S.K., and Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, 167 (2003).CrossRefGoogle Scholar
Kempaiah, R., Chung, A., and Maheshwari, V.: Graphene as cellular interface: Electromechanical coupling with cells. ACS Nano 5, 6025 (2011).CrossRefGoogle ScholarPubMed
Gómez-Lopera, S.A., Plaza, R.C., and Delgado, A.V.: Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J. Colloid Interface Sci. 240, 40 (2001).CrossRefGoogle ScholarPubMed
Qin, S., Guo, X., Cao, Y., Ni, Z., and Xu, Q.: Strong ferromagnetism of reduced graphene oxide. Carbon 78, 559 (2014).CrossRefGoogle Scholar
Saha, A., Basiruddin, S., Ray, S.C., Roy, S.S., and Jana, N.R.: Functionalized graphene and graphene oxide solution via polyacrylate coating. Nanoscale 2, 2777 (2010).CrossRefGoogle ScholarPubMed
Kaur, G., Adhikari, R., Cass, P., Bown, M., and Gunatillake, P.: Electrically conductive polymers and composites for biomedical applications. RSC Adv. 5, 37553 (2015).CrossRefGoogle Scholar
Jonas, F. and Heywang, G.: Technical applications for conductive polymers. Electrochim. Acta 39, 1345 (1994).CrossRefGoogle Scholar
Peramo, A., Urbanchek, M.G., Spanninga, S.A., Povlich, L.K., Cederna, P., and Martin, D.C.: In situ polymerization of a conductive polymer in acellular muscle tissue constructs. Tissue Eng. A 14, 423 (2008).CrossRefGoogle ScholarPubMed
Yoo, D., Kim, J., and Kim, J.H.: Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 7, 717 (2014).CrossRefGoogle Scholar
Liu, Y.F., Feng, J., Zhang, Y.F., Cui, H.F., Yin, D., Bi, Y.G., Song, J.F., Chen, Q.D., and Sun, H.B.: Improved efficiency of indium-tin-oxide-free organic light-emitting devices using PEDOT:PSS/graphene oxide composite anode. Org. Electron 26, 81 (2015).CrossRefGoogle Scholar
Wu, X., Liu, J., Wu, D., Zhao, Y., Shi, X., Wang, J., Huang, S., and He, G.: Highly conductive and uniform graphene oxide modified PEDOT:PSS electrodes for ITO-free organic light emitting diodes. J. Mater. Chem. C 2, 4044 (2014).CrossRefGoogle Scholar
Yin, B., Liu, Q., Yang, L., Wu, X., Liu, Z., Hua, Y., Yin, S., and Chen, Y.: Buffer layer of PEDOT:PSS/graphene composite for polymer solar cells. J. Nanosci. Nanotechnol. 10, 1934 (2010).CrossRefGoogle ScholarPubMed
Starbird, R., García-González, C.A., Smirnova, I., Krautschneider, W.H., and Bauhofer, W.: Synthesis of an organic conductive porous material using starch aerogels as template for chronic invasive electrodes. Mater. Sci. Eng. C 37, 177 (2014).CrossRefGoogle ScholarPubMed
Ray, S.C., Bhunia, S.K., Saha, A., and Jana, N.R.: Graphene oxide (GO)/reduced-GO and their composite with conducting polymer nanostructure thin films for non-volatile memory device. Microelectron. Eng. 146, 48 (2015).CrossRefGoogle Scholar
Eluyemi, M.S., Eleruja, M.A., Adedeji, A.V., Olofinjana, B., Fasakin, O., Akinwunmi, O.O., Ilori, O.O., Famojuro, A.T., Ayinde, S.A., and Ajayi, E.O.B.: Synthesis and characterization of graphene oxide and reduced graphene oxide thin films deposited by spray pyrolysis method. Graphene 5, 143 (2016).CrossRefGoogle Scholar
Roy, S., Soin, N., Bajpai, R., Misra, D.S., McLaughlin, J.A., and Roy, S.S.: Graphene oxide for electrochemical sensing applications. J. Mater. Chem. 21, 14725 (2011).CrossRefGoogle Scholar
Ganguly, A., Sharma, S., Papakonstantinou, P., and Hamilton, J.: Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 115, 17009 (2011).CrossRefGoogle Scholar
Ganya, E.S., Soin, N., Moloi, S.J., McLaughlin, J.A., Pong, W.F., and Ray, S.C.: Polyacrylate grafted graphene oxide nanocomposites for biomedical applications. J. Appl. Phys. 127, 54302 (2020).CrossRefGoogle Scholar
Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Cançado, L.G., Jorio, A., and Saito, R.: Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276 (2007).CrossRefGoogle ScholarPubMed
Ferrari, A.C.: Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47 (2007).CrossRefGoogle Scholar
Kaniyoor, A. and Ramaprabhu, S.: A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2, 32183 (2012).CrossRefGoogle Scholar
Sobon, G., Sotor, J., Jagiello, J., Kozinski, R., Zdrojek, M., Holdynski, M., Paletko, P., Boguslawski, J., Lipinska, L., and Abramski, K.M.: Graphene oxide vs reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt. Express 20, 19463 (2012).CrossRefGoogle ScholarPubMed
Ferrari, A. and Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B: Condens. Matter Mater. Phys. 61, 14095 (2000).CrossRefGoogle Scholar
Awasthi, S., Gopinathan, P.S., Rajanikanth, A., and Bansal, C.: Current–voltage characteristics of electrochemically synthesized multi-layer graphene with polyaniline. J. Sci. Adv. Mater. Devices 3, 37 (2018).CrossRefGoogle Scholar
Ray, S.C., Saha, A., Basiruddin, S.K., Roy, S.S., and Jana, N.R.: Polyacrylate-coated graphene-oxide and graphene solution via chemical route for various biological application. Diam. Relat. Mater. 20, 449 (2011).CrossRefGoogle Scholar
Ray, S.C., Chiou, J.W., Pong, W.F., and Tsai, M.H.: The electronic properties of nanomaterials elucidated by synchrotron radiation-based spectroscopy. Crit. Rev. Solid State Mater. Sci. 31, 91 (2006).CrossRefGoogle Scholar
Soin, N., Ray, S.C., Sarma, S., Mazumder, D., Sharma, S., Wang, Y.F., Pong, W.F., Roy, S.S., and Strydom, A.M.: Tuning the electronic and magnetic properties of nitrogen-functionalized few-layered graphene nanoflakes. J. Phys. Chem. C 121, 14073 (2017).CrossRefGoogle Scholar
Hunt, A., Dikin, D.A., Kurmaev, E.Z., Boyko, T.D., Bazylewski, P., Chang, G.S., and Moewes, A.: Epoxide speciation and functional group distribution in graphene oxide paper-like materials. Adv. Funct. Mater. 22, 3950 (2012).CrossRefGoogle Scholar
Geng, D., Yang, S., Zhang, Y., Yang, J., Liu, J., Li, R., Sham, T.K., Sun, X., Ye, S., and Knights, S.: Nitrogen doping effects on the structure of graphene. Appl. Surf. Sci. 257, 9193 (2011).CrossRefGoogle Scholar
Pacilé, D., Papagno, M., Rodríguez, A.F., Grioni, M., Papagno, L., Girit, C., Meyer, J.C., Begtrup, G.E., and Zettl, A.: Near-edge X-ray absorption fine-structure investigation of graphene. Phys. Rev. Lett. 101, 66806 (2008).CrossRefGoogle ScholarPubMed
Gandhiraman, R.P., Nordlund, D., Javier, C., Koehne, J.E., Chen, B., and Meyyappan, M.: X-ray absorption study of graphene oxide and transition metal oxide nanocomposites. J. Phys. Chem. C 118, 18706 (2014).CrossRefGoogle ScholarPubMed
Urquhart, S.G. and Ade, H.: Trends in the carbonyl core (C 1s, O 1s) → Π*c = o transition in the near-edge X-ray absorption fine structure spectra of organic molecules. J. Phys. Chem. B 106, 8531 (2002).CrossRefGoogle Scholar
Ren, P-G., Yan, D-X., Ji, X., Chen, T., and Li, Z-M.: Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology 22, 55705 (2011).CrossRefGoogle ScholarPubMed
Casanovas, J., Ricart, J.M., Rubio, J., Illas, F., and Jiménez-Mateos, J.M.: Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials. J. Am. Chem. Soc. 118, 8071 (1996).CrossRefGoogle Scholar
Chuang, C.H., Ray, S.C., Mazumder, D., Sharma, S., Ganguly, A., Papakonstantinou, P., Chiou, J.W., Tsai, H.M., Shiu, H.W., Chen, C.H., Lin, H.J., Guo, J., and Pong, W.F.: Chemical modification of graphene oxide by nitrogenation: An X-ray absorption and emission spectroscopy study. Sci. Rep. 7, 1 (2017).CrossRefGoogle ScholarPubMed
Kozlowski, C. and Sherwood, P.M.A.: X-ray photoelectron spectroscopic studies of carbon-fibre surfaces. Part 4 - The effect of electrochemical treatment in nitric acid. J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases 80, 2099 (1984).CrossRefGoogle Scholar
Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S., and Atieh, M.A.: XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 45, 14439 (2019).CrossRefGoogle Scholar
Consiglio, G., Di Pietro, P., D'Urso, L., Forte, G., Grasso, G., Sgarlata, C., Cossement, D., Snyders, R., and Satriano, C.: Surface tailoring of polyacrylate-grafted graphene oxide for controlled interactions at the biointerface. J. Colloid Interface Sci. 506, 532 (2017).CrossRefGoogle ScholarPubMed
Idisi, D.O., Oke, J.A., Sarma, S., Moloi, S.J., Ray, S.C., Pong, W.F., and Strydom, A.M.: Tuning of electronic and magnetic properties of multifunctional R-GO-ATA-Fe2O3-composites for magnetic resonance imaging (MRI) contrast agent. J. Appl. Phys. 126, 35301 (2019).CrossRefGoogle Scholar
Veerapandian, M., Zhang, L., Krishnamoorthy, K., and Yun, K.: Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials. Nanotechnology 24, 395706 (2013).CrossRefGoogle ScholarPubMed
Garg, R., Dutta, N., and Choudhury, N.: Work function engineering of graphene. Nanomaterials 4, 267 (2014).CrossRefGoogle ScholarPubMed
Sarma, S., Ray, S.C., and Strydom, A.M.: Electronic and magnetic properties of nitrogen functionalized graphene-oxide. Diam. Relat. Mater. 79, 1 (2017).CrossRefGoogle Scholar
Jakobsson, F.L.E., Crispin, X., Lindell, L., Kanciurzewska, A., Fahlman, M., Salaneck, W.R., and Berggren, M.: Towards all-plastic flexible light emitting diodes. Chem. Phys. Lett. 433, 110 (2006).CrossRefGoogle Scholar
Yazyev, O.V. and Helm, L.: Defect-induced magnetism in graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 75, 125408 (2007).CrossRefGoogle Scholar
Vozmediano, M.A.H., López-Sancho, M.P., Stauber, T., and Guinea, F.: Local defects and ferromagnetism in graphene layers. Phys. Rev. B: Condens. Matter Mater. Phys. 72, 155121 (2005).CrossRefGoogle Scholar
Wang, M., Huang, W., Chan-Park, M.B., and Li, C.M.: Magnetism in oxidized graphenes with hydroxyl groups. Nanotechnology 22, 105702 (2011).CrossRefGoogle ScholarPubMed
Singh, K., Ohlan, A., Saini, P., and Dhawan, S.K.: Poly(3,4-ethylenedioxythiophene)γ-Fe2O3 polymer composite–super paramagnetic behavior and variable range hopping 1D conduction mechanism–synthesis and characterization. Polym. Adv. Technol. 19, 229 (2008).CrossRefGoogle Scholar
Elk, K., Richter, J., and Christoph, V.: Density of states and electrical conductivity of disordered alloys with strong electron correlation. J. Phys. F Met. Phys. 9, 307 (1979).CrossRefGoogle Scholar
Yang, W., Ratinac, K.R., Ringer, S.P., Thordarson, P., Gooding, J.J., and Braet, F.: Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49, 2114 (2010).CrossRefGoogle ScholarPubMed
Shao, Y., Zhang, S., Engelhard, M.H., Li, G., Shao, G., Wang, Y., Liu, J., Aksay, I.A., and Lin, Y.: Nitrogen-doped graphene and its electrochemical applications. J. Mater. Chem. 20, 7491 (2010).CrossRefGoogle Scholar
Nguyen, K.T. and Zhao, Y.: Integrated graphene/nanoparticle hybrids for biological and electronic applications. Nanoscale 6, 6245 (2014).CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Ganya et al. supplementary material

Ganya et al. supplementary material

Download Ganya et al. supplementary material(PDF)
PDF 269 KB