Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T03:54:28.398Z Has data issue: false hasContentIssue false

Tribology and mechanical properties of excimer laser-processed Ti–Si3N4 surfaces

Published online by Cambridge University Press:  03 March 2011

T.R. Jervis
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J-P. Hirvonen
Affiliation:
VTT Manufacturing Technology, FIN-02044 VTT, Finland
M. Nastasi
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
H. Kung
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Titanium films were mixed, using excimer laser radiation, into the surface of bulk Si3N4 materials. The tribological and mechanical properties of these surfaces were then evaluated using pin-on-disk and nanoindenter techniques, respectively. Reduced friction and a change in the wear mechanism that resulted in a more benign failure mode were observed. These results are interpreted as resulting from the establishment of a transfer film, changes in the compliance of the surface which reduces instantaneous stresses in the surface, and toughening of the surface, all results of the laser process.

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1National Materials Advisory Board, National Research Council, Tribology of Ceramics, NMAB-435, National Academy Press (1988).Google Scholar
2Jervis, T. R., Hirvonen, J-P., and Nastasi, M., J. Mater. Res. 6, 146151 (1991).CrossRefGoogle Scholar
3Singh, R. K., Jagannadham, K., and Narayan, J., J. Mater. Res. 3, 11191126 (1988).CrossRefGoogle Scholar
4Narayan, J., Fathy, D., Holland, O. W., Appleton, B. R., Davis, R. F., and Becher, P.F., J. Appl. Phys. 56, 15771582 (1984).CrossRefGoogle Scholar
5See for example, Structure-Property Relationships in Surface-Modified Ceramics, edited by McHargue, C. J., Kossowsky, R., and Hofer, W.O. (Kluwer Academic Publishers, Dordrecht, 1989).CrossRefGoogle Scholar
6McHargue, C. J., in Structure-Property Relationships in Surface-Modified Ceramics, edited by McHargue, C. J., Kossowsky, R., and Hofer, W. O. (Kluwer Academic Publishers, Dordrecht, 1989), pp. 253273.CrossRefGoogle Scholar
7See for example, MRS Bulletin, February, 20 (1995).Google Scholar
8Jervis, T. R., Nastasi, M., and Hubbard, K.M., Appl. Phys. Lett. 60, 912914 (1992).CrossRefGoogle Scholar
9Jervis, T. R., Nastasi, M., Hirvonen, J-P., and Hubbard, K. M., J. Am. Ceram. Soc. 76, 350 (1993).CrossRefGoogle Scholar
10Jervis, T. R., Nastasi, M., and Hirvonen, J-P., in Beam-Solid Interactions: Fundamentals and Applications, edited by Nastasi, M., Harriott, L. R., Herbots, N., and Averback, R. S. (Mater. Res. Soc. Symp. 279, Pittsburgh, PA, 1993), pp. 665678.Google Scholar
11Oliver, W. C., Hutchings, R., and Pethica, J. B., ASTM Spec. Tech. Pub. 889, 90108 (1986).Google Scholar
12Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
13Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
14Ajayi, O. O. and Ludema, K. C., Wear 124, 237 (1988).CrossRefGoogle Scholar
15Zaleski, M., Jervis, T. R., and Mayer, J. W., J. Am. Ceram. Soc. 76, 356 (1993).CrossRefGoogle Scholar
16Fischer, T. E. and Tomizawa, H., Wear 105, 29 (1985).CrossRefGoogle Scholar