Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T12:43:12.340Z Has data issue: false hasContentIssue false

Transparent Lead Lanthanum Zirconate Titanate Ceramics Derived from Oxide Mixture Via a Repeated Annealing Process

Published online by Cambridge University Press:  31 January 2011

L. B. Kong
Affiliation:
School of Materials Engineering, Nanyang Technological University, Singapore 639798
J. Ma
Affiliation:
School of Materials Engineering, Nanyang Technological University, Singapore 639798
T. S. Zhang
Affiliation:
School of Materials Engineering, Nanyang Technological University, Singapore 639798
R. F. Zhang
Affiliation:
School of Materials Engineering, Nanyang Technological University, Singapore 639798
Get access

Extract

Lead lanthanum zirconate titanate (PLZT9/65/35) ceramics were prepared from their oxide mixture via reactive sintering without involving a calcination step. PLZT ceramics sintered at 1000 °C for 4 h possessed a grain size of 3–4 μm, a dielectric constant of 3670, a dielectric loss of 0.033 at 1 kHz, and a remnant polarization of 5.7 μC/cm2 and coercive field of 4.6 kV/cm, respectively. Transparent PLZT ceramics were obtained by annealing the sintered samples at 1125 °C for 6 h repeatedly for 4 times without using hot pressing or oxygen flow. The grain size of PLZT ceramics increased to 4–6 μm, with dielectric constant of 5187 and dielectric loss (1 kHz) of 0.036, and remnant polarization of 11 μC/cm2 and coercive field of 5.3 kV/cm. The transparent PLZT ceramics demonstrated a transmittance of 42% at a wavelength of 550 nm.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Haertling, G.H. and Land, C.E., J. Am. Ceram. Soc. 54, 1 (1971).CrossRefGoogle Scholar
2.Haertling, G.H. and Land, C.E., Ferroelectrics 3, 269 (1972).CrossRefGoogle Scholar
3.Haertling, G.H., J. Am. Ceram. Soc. 82, 797 (1999).CrossRefGoogle Scholar
4.Thomson, J. Jr., Am. Ceram. Soc. Bull. 53, 421 (1974).Google Scholar
5.Yoshikawa, Y. and Tsuzuki, K., J. Am. Ceram. Soc. 75, 2520 (1992).CrossRefGoogle Scholar
6.Potdar, H.S., Deshpande, S.B., and Date, S.K., Mater. Lett. 19, 269 (1994).CrossRefGoogle Scholar
7.Akbas, M.A. and Lee, W.E., J. Eur. Ceram. Soc. 15, 57 (1995).CrossRefGoogle Scholar
8.Cerqueira, M., Nasar, R.S., Leite, E.R., Longo, E., and Varela, J.A., Mater. Lett. 35, 166 (1998).CrossRefGoogle Scholar
9.Shrout, T.R., Kim, P., Patet, S., and Lee, G.S., J. Am. Ceram. Soc. 73, 1862 (1990).CrossRefGoogle Scholar
10.Xue, J. and Wang, J., J. Mater. Res. 14, 1503 (1999).Google Scholar
11.Song, B.M., Kim, D.Y., Shirasaki, S., and Yamamura, H., J. Am. Ceram. Soc. 72, 833 (1989).CrossRefGoogle Scholar
12.Haertling, G.H., J. Am. Ceram. Soc. 54, 303 (1971).CrossRefGoogle Scholar
13.Okazaki, K., Ohtsubo, I., and Toda, K., Ferroelectrics 10, 195 (1976).CrossRefGoogle Scholar
14.Dungan, R.H. and Snow, G.S., Am. Ceram. Soc. Bull. 56, 781 (1977).Google Scholar
15.Brown, L.M. and Mazdiyasni, K.S., J. Am. Ceram. Soc. 55, 541 (1972).CrossRefGoogle Scholar
16.Snow, G.S., J. Am. Ceram. Soc. 56, 479 (1973).CrossRefGoogle Scholar
17.James, A.D. and Messer, R.M., Trans. J. Br. Ceram. Soc. 77, 152 (1978).Google Scholar
18.Duran, P. and Moure, C., Am. Ceram. Soc. Bull. 64, 575 (1985).Google Scholar
19.Hammer, M. and Hoffmann, M.J., J. Am. Ceram. Soc. 81, 3277 (1998).CrossRefGoogle Scholar
20.Chen, I.W. and Wang, X.H., Nature 404, 168 (2000).CrossRefGoogle Scholar