Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T19:02:58.476Z Has data issue: false hasContentIssue false

Transmission electron microscopy with in situ ion irradiation

Published online by Cambridge University Press:  10 February 2015

Jonathan Andrew Hinks*
Affiliation:
Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The macroscopic properties of materials exposed to irradiation are determined by radiation damage effects which occur on the nanoscale. These phenomena are complex dynamic processes in which many competing mechanisms contribute to the evolution of the microstructure and thus to its end-state. To explore and understand the behavior of existing materials and to develop new technologies, it is highly advantageous to be able to observe the microstructural effects of irradiation as they occur. Transmission electron microscopy with in situ ion irradiation is ideally suited to this kind of study. This review focuses on some of the important factors in designing this type of experiment including sample preparation and ion beam selection. Also presented are a brief history of the development of this technique and an overview of the instruments in operation today including the latest additions.

Type
Invited Reviews
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Khalid Hattar

References

REFERENCES

Pashley, D.W. and Presland, A.E.B.: Ion damage to metal films inside an electron microscope. Philos. Mag. 6(68), 10031012 (Aug. 1961).Google Scholar
Howe, L.M., Gilbert, R.W., and Piercy, G.R.: Direct observation of radiation damage produced in copper below 30 K during ion bombardment in the electron microscope. Appl. Phys. Lett. 3(8), 125 (1963).CrossRefGoogle Scholar
Howe, L.M. and McGurn, J.F.: Direct observation of disappearance and collapse of stacking-fault tetrahedra in gold foils during ion bombardment in the electron microscope. Appl. Phys. Lett. 4(6), 99 (1964).CrossRefGoogle Scholar
Parsons, J.R. and Howe, L.M.: Measurement of the ion flux emanating from oxide coated emission filaments in a Siemens electron microscope. J. Sci. Instrum. 41(12), 773775 (Dec. 1964).Google Scholar
Howe, L., McGurn, J., and Gilbert, R.: Direct observation of radiation damage produced in copper, gold and aluminum during ion bombardments at low temperatures in the electron microscope. Acta Metall. 14(7), 801820 (Jul. 1966).Google Scholar
Thackery, P.A., Nelson, R.S., and Sansom, H.C.: A combined heavy ion accelerator-electron microscope for the direct observation of radiation effects (Harwell, England, 1968).Google Scholar
Thackery, P.A. and Nelson, R.S.: A combined heavy ion accelerator-electron microscope for the direct observation of radiation effects. Proc. R. Microsc. Soc. 4(1), 30 (1969).Google Scholar
Whitmell, D.S., Kennedy, W.A.D., Mazey, D.J., and Nelson, R.S.: A heavy-ion accelerator-electron microscope link for the direct observation of ion irradiation effects. Radiat. Eff. 22(3), 163168 (Jan. 1974).Google Scholar
Jesser, W.A., Horton, J.A., and Scribner, L.L.: Adaptation of an ion accelerator to a high voltage electron microscope. Radiat. Eff. 29(2), 7982 (Jan. 1976).CrossRefGoogle Scholar
Ruault, M.O., Lerme, M., Jouffrey, B., and Chaumont, J.: Adaptation of an ion implanter on a 100 kV electron microscope for in situ irradiation experiments. J. Phys. E: Sci. Instrum 11(11), 11251128 (Nov. 1978).Google Scholar
Ishino, S., Kawanishi, H., and Fukuya, K.: In situ observation of radiation damage by 400 keV heavy ions. Proc. 4th Top. Meet. Technol. Control. Nucl. Fusion, 1981, p. 1683.Google Scholar
Taylor, A.: In situ analysis of ion irradiation and implantation effects. IEEE Trans. Nucl. Sci. 26(1), 13021304 (Feb. 1979).Google Scholar
Taylor, A., Wallace, J.R., Ryan, E.A., Philippides, A., and Wrobel, J.R.: In situ implantation system in Argonne national laboratory Hvem-tandem facility. Nucl. Instrum. Methods Phys. Res. 189(1), 211217 (Oct. 1981).Google Scholar
Allen, C.W., Funk, L.L., and Ryan, E.A.: New instrumentation in Argonne’s Hvem-tandem facility: Expanded capability for in situ ion beam studies. MRS Proc. 396, 641 (Feb. 2011).CrossRefGoogle Scholar
Furuya, K., Piao, M., Ishikawa, N., and Saito, T.: High resolution transmission electron microscopy of defect clusters in aluminum during electron and ion irradiation at room temperature. MRS Proc. 439, 331 (Feb. 2011).CrossRefGoogle Scholar
Hinks, J.: A review of transmission electron microscopes with in situ ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 267(23–24), 36523662 (Dec. 2009).Google Scholar
Serruys, Y., Ruault, M-O., Trocellier, P., Henry, S., Kaïtasov, O., and Trouslard, P.: Multiple ion beam irradiation and implantation: Jannus project. Nucl. Instrum. Methods Phys. Res., Sect. B 240(1–2), 124127 (Oct. 2005).Google Scholar
Hinks, J.A., van den Berg, J.A., and Donnelly, S.E.: Miami: Microscope and ion accelerator for materials investigations. J. Vac. Sci. Technol., A 29(2), 021003 (2011).Google Scholar
Hattar, K., Bufford, D.C., and Buller, D.L.: Concurrent in situ ion irradiation transmission electron microscope. Nucl. Instrum. Methods Phys. Res., Sect. B 338, 5665 (Nov. 2014).Google Scholar
Ishino, S.: Time and temperature dependence of cascade induced defect production in in situ experiments and computer simulation. J. Nucl. Mater. 206(2–3), 139155 (Nov. 1993).CrossRefGoogle Scholar
Ishino, S.: A review of in situ observation of defect production with energetic heavy ions. J. Nucl. Mater. 251, 225236 (Nov. 1997).Google Scholar
Allen, C.W., Ohnuki, S., and Takahashi, H.: Facilities for in situ ion beam studies in transmission electron microscopes. Trans. Mater. Res. Soc. Jpn. 17, 93 (1994).Google Scholar
Allen, C.W.: In situ ion- and electron-irradiation effects studies in transmission electron microscopes. Ultramicroscopy 56(1–3), 200210 (Nov. 1994).CrossRefGoogle Scholar
Allen, C.W. and Ryan, E.A.: In situ transmission electron microscopy employed for studies of effects of ion and electron irradiation on materials. Microsc. Res. Tech. 42(4), 255259 (Aug. 1998).Google Scholar
Birtcher, R.C., Kirk, M.A., Furuya, K., Lumpkin, G.R., and Ruault, M-O.: In situ transmission electron microscopy investigation of radiation effects. J. Mater. Res. 20(07), 16541683 (Mar. 2011).Google Scholar
Serruys, Y., Ruault, M-O., Trocellier, P., Miro, S., Barbu, A., Boulanger, L., Kaïtasov, O., Henry, S., Leseigneur, O., Trouslard, P., Pellegrino, S., and Vaubaillon, S.: JANNuS: Experimental validation at the scale of atomic modelling. C. R. Phys. 9(3–4), 437444 (Apr. 2008).Google Scholar
Ziegler, J.F., Ziegler, M.D., and Biersack, J.P.: SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res., Sect B 268(11–12), 1818 (2010).Google Scholar
Perks, A.J. and Simmons, J.H.W.: Dimensional changes and radiation creep of graphite at very high neutron doses. Carbon 4, 85 (1966).Google Scholar
Henson, R.W., Perks, A.J., and Simmons, J.H.W.: Lattice parameter and dimensional changes in graphite irradiated between 300 and 1350 °C. Carbon 6(6), 789 (Dec. 1968).CrossRefGoogle Scholar
Hinks, J.A., Haigh, S.J., Greaves, G., Sweeney, F., Pan, C.T., Young, R.J., and Donnelly, S.E.: Dynamic microstructural evolution of graphite under displacing irradiation. Carbon 68, 273284 (Mar. 2014).Google Scholar
Guérin, Y., Was, G.S., Zinkle, S.J., and Editors, G.: Materials challenges for advanced nuclear energy systems. MRS Bull. 34, 10 (2009).Google Scholar
Was, G.S.: Fundamentals of Radiation Materials Science: Metals and Alloys. (Springer, Berlin, Germany, 2007).Google Scholar
Greaves, G., Hinks, J.A., Busby, P., Mellors, N.J., Ilinov, A., Kuronen, A., Nordlund, K., and Donnelly, S.E.: Enhanced sputtering yields from single-ion impacts on gold nanorods. Phys. Rev. Lett. 111(6), 065504 (Aug. 2013).Google Scholar
McCaffrey, J.P.: Improved TEM samples of semiconductors prepared by a small-angle cleavage technique. Microsc. Res. Tech. 24(2), 180184 (Feb. 1993).Google Scholar
McCaffrey, J.P.: Small-angle cleavage of semiconductors for transmission electron microscopy. Ultramicroscopy 38(2), 149157 (Nov. 1991).Google Scholar
Wirtza, T., Dowsetta, D., Vanhovea, N., and Fleminga, Y.: Correlative microscopy using SIMS for high-sensitivity elemental mapping. Microsc. Microanal. 19(S2), 356 (2013).CrossRefGoogle Scholar
Tanaka, M., Furuya, K., and Saito, T.: Focused ion beam interfaced with a 200 keV transmission electron microscope for in situ micropatterning on semiconductors. Microsc. Microanal. 4(03), 207217 (Jul. 2005).Google Scholar
Muroga, T., Sakamoto, R., Fukui, M., Yoshida, N., and Tsukamoto, T.: In situ study of microstructural evolution in molybdenum during irradiation with low energy hydrogen ions. J. Nucl. Mater. 196198, 10131017 (Dec. 1992).Google Scholar
Arakawa, K., Tsukamoto, T., Tadakuma, K., Yasuda, K., and Ono, K.: In situ observation of the microstructural evolution in germanium under the low-energy helium ion irradiation. J. Electron Microsc. 48, 399 (1999).Google Scholar
Abe, H., Naramoto, H., Hojou, K., Furuno, S., and Tsukamoto, T.: Transmission electron microscope interfaced with ion accelerators and its application to materials science. Proc. 7th Int. Symp. Adv. Nucl. Energy Res., 1996, p. 365.Google Scholar
Hojou, K., Furuno, S., Kushita, K.N., Otsu, H., Furuya, Y., and Izui, K.: In situ EELS and TEM observation of silicon carbide irradiated with helium ions at low temperature and successively annealed. Nucl. Instrum. Methods Phys. Res., Sect. B 116(1–4), 382388 (Aug. 1996).CrossRefGoogle Scholar
Guo, L.P., Liu, C.S., Li, M., Song, B., Ye, M.S., Fu, D.J., and Fan, X.J.: Establishment of in situ TEM–implanter/accelerator interface facility at Wuhan University. Nucl. Instrum. Methods Phys. Res., Sect. A 586(2), 143147 (Feb. 2008).Google Scholar