Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T10:01:43.170Z Has data issue: false hasContentIssue false

Toward Rational Design of Fast Ion Conductors: Molecular Dynamics Modeling of Interfaces of Nanoscale Planar Heterostructures

Published online by Cambridge University Press:  31 January 2011

J-J. Liang
Affiliation:
Accelrys Inc., 9685 Scranton Road, San Diego, California 92121
P.W-C. Kung
Affiliation:
Accelrys Inc., 9685 Scranton Road, San Diego, California 92121
Get access

Abstract

Increased ionic conductivity at nanoscale planar interfaces of the CaF2|BaF2 system was successfully modeled using molecular dynamics simulations. A criterion was established to construct simulation cells containing any arbitrarily lattice-mismatched interfaces while permitting periodic boundary condition. The relative (to the bulk) ionic conductivity increase at the 111 (CaF2)|111 (BaF2) interface was qualitatively reproduced. Higher conductivity, by a factor of 7.6, was predicted for the 001 (CaF2)|001 (BaF2) interface. A crystalline nanocomposite of the CaF2|BaF2 system, in which the [001] morphology is encouraged and crystallite dimensions are approximately 4 nm, was proposed to give ionic conductivity approaching that predicted for the 001 (CaF2)|001 (BaF2) interface.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kudo, T. and Fueki, K., Solid State Ionics, 1st ed. (VCH, Weinheim, Germany, 1990); C.E. Rice and P.M. Bridenbaugh, Appl. Phys. Lett. 38, 59 (1981); A. Sher, C.L. Fales, and J.F. Stubblesfield, Appl. Phys. Lett. 28, 676 (1976); J. Schooman, J. Electrochem. Soc. 154, 1553 (1976).Google Scholar
Hall, S. and Berastegui, P., J. Phys.: Condens. Matter. 11, 5257 (1999); R.W. Bonne and J. Schoonman, J. Electrochem. Soc.: Electrochem Sci. Technol. 124, 28 (1997); S. Hull, P. Berastegui, S.G. Eriksson, and N.J.G. Gardner, J. Phys.: Condens. Matter. 10, 8429 (1998); Y. Ito, T. Mukoyama, F. Kanamaru, and S. Yoshikado, Solid State Ionics 73, 728 (1994).Google Scholar
Jiang, H., Costales, A., Blanco, M.A., Gu, M., Pandey, R.J.D., Phys. Rev. B, 62, 803 (2000); M.J. Castiglione, M. Wilson, and P.A. Madden, J. Phys.: Condens. Matter. 11, 9009 (1999).CrossRefGoogle Scholar
Adachi, G-Y., Imanaka, N., and Aono, H., Adv. Mater. 8, 127 (1996); J.R. Owen, Chem. Soc. Rev. 26, 259 (1997); A.D. Robertson, A.R. West, and A.G. Ritchie, Solid State Ionics 104, 1 (1997).CrossRefGoogle Scholar
Liang, C.C., J. Electrochem. Soc. 120, 1289 (1973).CrossRefGoogle Scholar
Zimmer, F., Ballone, P., Parrinello, M., and Maier, J., Solid State Ionics 127, 277 (2000); N.T. Wilson, P.A. Madden, and Pyper, J. Chem. Phys. 105, 11209 (1996); R. Yamamoto, Kobayashi, and Y. Kawamoto, J. Phys.: Condens. Matter 7, 8557 (1995); P.J.D. Lindan and M.J. Gillan, J. Phys.: Condens Matter 5, 1019 (1993); Computer Simulation of Solids edited by C.R.A. Catlow and W.C. Mackrodt (Springer, Berlin, Germany, 1982)CrossRefGoogle Scholar
Schulz, G. and Martin, M., Faraday Discuss. 106, 291 (1997).CrossRefGoogle Scholar
Shen, Q. and Ellis, D.E., Phys. Rev. B 51, 15732 (1995).CrossRefGoogle Scholar
Sata, N., Eberman, K., Eberl, K., and Maier, J., Nature 408, 946 (2000).CrossRefGoogle Scholar
Little, R.B., El-Sayed, M.A., Bryant, G.W., and Burke, S., J. Chem. Phys. 114, 1813 (2001).CrossRefGoogle Scholar
Maier, J., Solid State Ionics 131, 13 (2000); J. Maier, J. Electrochem. Soc. 134, 1524 (1987).CrossRefGoogle Scholar
Maier, J., Prog. Solid State Chem. 23, 171 (1995); I. Markov and A. Milchev, Surface Sci. 136, 519 (1984); A. Zur and T.C. McGill, J. Appl. Phys. 55, 378 (1984); I. Royer, Bull. Soc. Fr. Mineral Cristallogr. 51, 7 (1928).CrossRefGoogle Scholar
Rayer, I, Bull. Soc. Fr. Mineral Cristallogr. 51, 7 (1928).Google Scholar
Delley, B., J. Chem. Phys. 92, 508 (1990).CrossRefGoogle Scholar
Perdew, J.P., Burke, K., and Wang, Y., Phys. Rev. B: Condens. Matter 54, 16533 (1996).CrossRefGoogle Scholar
Sun, H., J. Phys. Chem. B 102, 7338 (1998).CrossRefGoogle Scholar
Gale, J.D., General Utility Lattice Program (Royal Institution of Great Britain/Imperial College, United Kingdom, 1992–1994).Google Scholar
Stark, J.G. and Wallace, H.G., Chemistry Data Book, 2nd ed. (Murray, New York, 1991).Google Scholar
Navrotsky, A., MRS Bull. 35 (1997); I. Petrovic, A. Navrotsky, M.E. Davis, and S.I. Zones, Chem. Mater. 5, 1805 (1993).Google Scholar
Lindan, P.J.D. and Gillan, M.J., J. Phys.: Condens. Mater. 5, 1019 (1993).Google Scholar
Yamamoto, R., Kabayashi, T., and Kawanoto, Y., J. Phys.: Condens. Matter. 7, 8557 (1995).Google Scholar
Compaan, K. and Haven, Y., Trans. Faraday Soc. 52, 786 (1956); R.W.G. Wyckoff, in Crystal Structures (Interscience, John Wiley & Sons, 1963), Vol. 1.CrossRefGoogle Scholar