Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T05:48:25.784Z Has data issue: false hasContentIssue false

Toward a simple density functional theory of nonuniform solids

Published online by Cambridge University Press:  31 January 2011

James P. Stoessel
Affiliation:
BIOSYM Technologies, Inc., San Diego, California 92121
Get access

Abstract

With analogy to the “highly accurate” summation of cluster diagrams for hard sphere fluids à la Carnahan-Starling, a simple real space free-energy density functional for arbitrary potential systems is proposed, based on a generalization of the second virial coefficient to inhomogeneous systems, which when applied to ordered and amorphous solid hard-sphere systems yields pressures in remarkable agreement with experiment. Possibilities for corrections and extensions toward a simple density functional theory of nonuniform solids are noted.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Onsager, L., Ann. N.Y. Acad. Sci. 51, 627 (1949).CrossRefGoogle Scholar
2Salsburg, Z. W. and Wood, W. W., J. Chem. Phys. 42, 3852 (1965).Google Scholar
3Yang, A. J. M., Fleming, P. D., and Gibbs, J. H., J. Chem. Phys. 64, 3732 (1976).CrossRefGoogle Scholar
4Morita, T. and Hiroike, K., Prog. Theor. Phys. 25, 537 (1961).CrossRefGoogle Scholar
5Carnahan, N. F. and Starling, K. E., J. Chem. Phys. 51, 635 (1969).CrossRefGoogle Scholar
6Ree, F. H. and Hoover, W. G., J. Chem. Phys. 40, 939 (1964); 46, 4181 (1967).CrossRefGoogle Scholar
7See, for example, Hansen, J. P. and McDonald, I. R., in Theory of Simple Liquid (Academic, New York, 1976).Google Scholar
8Tarazona, P., Mol. Phys. 52, 81 (1984).CrossRefGoogle Scholar
9Frenkel, D. and McTague, J. P., Ann. Rev. Phys. Chem. 31, 491 (1980).CrossRefGoogle Scholar
10Young, D. and Alder, B. J., J. Chem. Phys. 60, 1254 (1974).CrossRefGoogle Scholar
11Baus, M. and Colot, J. L., Mol. Phys. 55, 653 (1985).CrossRefGoogle Scholar
12Adler, B. J., Hoover, W. G., and Young, D. A., J. Chem. Phys. 49, 3688 (1968).Google Scholar
13Bennett, C. H., J. Appl. Phys. 43, 2727 (1972).CrossRefGoogle Scholar
14Bernal, J. D., Proc. R. Soc. London, Ser. A 280, 299 (1964).Google Scholar
15Woodcock, L. V. and Angell, C. A., Phys. Rev. Lett. 47, 1129 (1981).CrossRefGoogle Scholar
16Hoover, W. G. and Ree, F. H., J. Chem. Phys. 49, 3609 (1968).CrossRefGoogle Scholar
17Hoover, W. G., Ross, M., Johnson, K. W., Henderson, D., Barker, J. A., and Brown, B. C., J. Chem. Phys. 52, 4931 (1970).CrossRefGoogle Scholar
18Hansen, J. P., Phys. Rev. A 2, 221 (1970).CrossRefGoogle Scholar
19Hansen, J. P. and Verlet, L., Phys. Rev. 184, 151 (1969).CrossRefGoogle Scholar