Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T12:10:33.771Z Has data issue: false hasContentIssue false

Time evolution of the structural short-range order during the mechanical milling of Fe–Co–Cu nanocrystalline alloys

Published online by Cambridge University Press:  31 January 2011

N. Gay-Sanz
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
C. Prieto
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
A. de Andrés
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
M. Vázquez
Affiliation:
Instituto de Magnetismo Aplicado, Universidad Complutense de Madrid—Renfe and Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, P.O. Box 155, 28230 Las Rozas, Spain
Seong-Cho Yu
Affiliation:
Department of Physics, Chungbuk National University, Cheongju, 360–763 Korea
Get access

Abstract

The local order around Fe, Co, and Cu atoms was investigated by extended x-ray absorption fine structure spectroscopy in Fe–Co–Cu nanocrystalline alloys prepared by mechanical alloying. In order to study the time evolution of the alloying process, Fe30Co20Cu50 samples were studied after several processing times. The analysis of the data shows that, in a first step, a binary Co–Cu alloy is formed, but iron remains separate in the form of nanocrystals with a high defect concentration. Afterwards, in a second step, the final ternary Fe–Co–Cu alloy with the face-centered-cubic structure is obtained.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yavari, A.R., Dere, P.J., and Benameur, T., Phys. Rev. Lett. 68, 2235 (1992).CrossRefGoogle Scholar
2.Eckert, J., Holzer, J.C., Krill, C.E. III, and Johnson, W.L., J. Appl. Phys. 73, 2794 (1993).CrossRefGoogle Scholar
3.Crespo, P., Hernando, A., Escorial, A.G., Kemmer, K.M., and Harris, V.G., J. Appl. Phys. 71, 1896 (1992).Google Scholar
4.Kuhrt, C. and Schultz, L., J. Appl. Phys. 71, 1896 (1992).CrossRefGoogle Scholar
5.Gente, C., Oehring, M., and Bormann, R., Phys. Rev. B 48, 13245 (1993).CrossRefGoogle Scholar
6.Yoo, Y-G., Kim, W-T., Yu, S-C., and Kim, Y-D., J. Magn. Magn. Mater. 157/158, 233 (1996).CrossRefGoogle Scholar
7.Yu, S-C., Yoo, Y-G., Kim, W-T., Anderson, C., Dickson, D., and Zeiske, T., J. Appl. Phys. 81, 5799 (1997).CrossRefGoogle Scholar
8.Kim, W-T., Yoo, Y-G., Yu, S-C., Agudo, P., Navarro, E., Vazquez, M., and Hernando, A., J. Magn. Magn. Mater. 157/ 158, 233 (1996).Google Scholar
9.Prieto, C., de Bernabé, A., Gay-Sanz, N., Vázquez, M., and Yu, S-C., J. Non-Cryst. Solids 246, 169 (1999).CrossRefGoogle Scholar
10.Harris, V.G., Kemmer, K.M., Das, B.N., Koon, N.C., Ehrlich, A.E., Kirkland, J.P., Woicik, J.C., Crespo, P., Hernando, A., and García-Escorial, A., Phys. Rev. B 54, 6929 (1996).CrossRefGoogle Scholar
11.Rehr, J.J., Jpn. J. Appl. Phys. 32, 8 (1993).CrossRefGoogle Scholar
12.Di Cicco, A., Berrettoni, M., Stizza, S., Bonetti, E., and Cocco, G., Phys. Rev. B 50, 12386 (1994).CrossRefGoogle Scholar
13.Koningsberger, D.C. and Prins, R., X-ray absorption principles, applications, techniques of EXAFS, SEXAFS and XANES (John Wiley, New York, 1988).Google Scholar