Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T13:16:28.777Z Has data issue: false hasContentIssue false

Thin-film reactions of Au with Ti, Zr, V, and Nb

Published online by Cambridge University Press:  31 January 2011

E. G. Colgan
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
J. W. Mayer
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Get access

Abstract

The thin-film interactions of Au with Ti, Zr, V, and Nb have been investigated between 350C and 700°C with Rutherford backscattering spectroscopy (RBS) and x-ray diffraction (XRD). Initially the most Au-rich phase is formed, except. with V, and it is followed sequentially by the more metal-rich ones in an increasingly layer-by-layer fashion. For Au reactions on Ti and Nb, all the intermetallic phases on the phase diagrams were observed. In the formation of Au4Ti, Au is the dominant moving species.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tu, K. N. and Mayer, J. W., in Thin Films—Interdiffusion and Reactions, edited by Poate, J. M., Tu, K. N., and Mayer, J. W. (Wiley, New York, 1978), Chap. 10.Google Scholar
2Murarka, S. P., Silicides for VLSI Applications (Academic, New York, 1983).Google Scholar
3Nicolet, M.-A. and Lau, S. S., in VLSI Electronics; Microstructure Science, edited by Einspruch, N. G. and Larrabee, G. B. (Academic, New York, 1983), Vol. 6, Chap. 6.Google Scholar
4Baglin, J. E. E. and Poate, J. M., in Ref. 1, Chap. 9.Google Scholar
5Campisano, S. U., in Thin Film Phenomena; Interfaces and Interactions, edited by Baglin, J. E. E. and Poate, J. M. (Electrochemical Society, Princeton, NJ, 1978), p. 129.Google Scholar
6Colgan, E. C., Nastasi, M., and Mayer, J. W., J. Appl. Phys. 58, 4125 (1985).Google Scholar
7Colgan, E. G. and Mayer, J. W., in Thin Films–Interfaces and Phenomena, edited by Nemanich, R. J., Ho, P. S., and Lau, S. S. (North-Holland, New York, 1986), p. 121.Google Scholar
8Colgan, E. G. and Mayer, J. W., Nucl. Instrum. Methods B 17, 242 (1986).Google Scholar
9Tisone, T. C. and Drobek, J., J. Vac. Sci. Technol. 9, 271 (1972).Google Scholar
10Poate, J. M., Turner, P. A., and DeBonte, W. J., J. Appl. Phys. 46, 4275 (1975).Google Scholar
11Christou, A. and Day, H., J. Appl. Phys. 44, 3386 (1973).Google Scholar
12Tisone, T. C. and Lau, S. S., J. Appl. Phys. 45, 1667 (1974).Google Scholar
13Liaw, J.-W., Liu, Y.-C., Maa, J.-S., Hsu, W.-S., Shen, W.-J., and Hsiung, S. K., Ts'ai Liao K'o Hsueh 12, 36 (1980).Google Scholar
14Villars, P. and Calvert, L. D., Pearson's Handbook of Ctyrstallogra-phic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1985).Google Scholar
15Doolittle, L. R., Nucl. Instrum. Methods B 9, 344 (1985).Google Scholar
16The stopping power data came from: Ziegler, J. F., Biersack, J. P., and Littmark, U., IBM Research Report No. RC9250, 1982.Google Scholar
17Murray, J. L., Bull. Alloy Phase Diagrams 4, 278 (1983).CrossRefGoogle Scholar
18Massalski, T. B., Okamoto, H., and Abriata, J. P., Bull. Alloy Phase Diagrams 6, 519 (1985).Google Scholar
19Smith, J. F., Bull. Alloy Phase Diagrams 2, 344 (1981).Google Scholar
20Okamoto, H. and Massalski, T. B., Bull. Alloy Phase Diagrams 6, 134 (1985).Google Scholar
22Bene, R. W., Appl. Phys. Lett. 41, 529 (1982).Google Scholar
22The correction to the rule is a private communication from R. W. Bene.Google Scholar