Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T12:56:27.423Z Has data issue: false hasContentIssue false

Thin water films covering oxide nanomaterials: Stability issues and influences on materials processing

Published online by Cambridge University Press:  11 February 2019

Gilles R. Bourret
Affiliation:
Department of Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Salzburg A-5020, Austria
Oliver Diwald*
Affiliation:
Department of Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Salzburg A-5020, Austria
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ambient water condenses readily on metal oxides, which can lead to water film formation and water-mediated reactions at the oxide surface. Similar to bulk water, thin water films with thicknesses below 10 molecular layers can modify the oxide surface chemical reactivity and stability. However, due to the confinement of mass transport at the oxide surface, these processes do not proceed exactly as they do in bulk liquid water. In this review article, we will present selected examples from our group and others’ that illustrate the rich interaction of MgO and TiO2 nanostructures with thin water films. We will show that these condensed water films can induce significant chemical, structural, and microstructural transformations of metal oxide nanostructures such as dissolution/precipitation, morphological changes, crystallization, and self-assembly in the solid state.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

Garde, S. and Schlossman, M.L.: Water at functional interfaces. MRS Bull. 39, 10511053 (2014).CrossRefGoogle Scholar
Stumm, W., Sigg, L., and Sulzberger, B.: Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water in Natural Systems (Wiley, New York, 1992).Google Scholar
Verdaguer, A., Sacha, G.M., Bluhm, H., and Salmeron, M.: Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 106, 14781510 (2006).CrossRefGoogle Scholar
Ewing, G.E.: Ambient thin film water on insulator surfaces. Chem. Rev. 106, 15111526 (2006).CrossRefGoogle ScholarPubMed
Ringleb, F., Sterrer, M., and Freund, H-J.: Preparation of Pd–MgO model catalysts by deposition of Pd from aqueous precursor solutions onto Ag(001)-supported MgO(001) thin films. Appl. Catal., A 474, 186193 (2014).CrossRefGoogle Scholar
Bjorneholm, O., Hansen, M.H., Hodgson, A., Liu, L-M., Limmer, D.T., Michaelides, A., Pedevilla, P., Rossmeisl, J., Shen, H., Tocci, G., Tyrode, E., Walz, M-M., Werner, J., and Bluhm, H.: Water at interfaces. Chem. Rev. 116, 76987726 (2016).CrossRefGoogle Scholar
McBriarty, M.E., von Rudorff, G.F., Stubbs, J.E., Eng, P.J., Blumberger, J., and Rosso, K.M.: Dynamic stabilization of metal oxide-water interfaces. J. Am. Chem. Soc. 139, 25812584 (2017).CrossRefGoogle ScholarPubMed
Mu, R., Zhao, Z-J., Dohnálek, Z., and Gong, J.: Structural motifs of water on metal oxide surfaces. Chem. Soc. Rev. 46, 17851806 (2017).CrossRefGoogle ScholarPubMed
Sterrer, M., Nilius, N., Shaikhutdinov, S., Heyde, M., Schmidt, T., and Freund, H-J.: Interaction of water with oxide thin film model systems. J. Mater. Res. FirstView online at https://doi.org/10.1557/jmr.2018.454 (2019).CrossRefGoogle Scholar
Goniakowski, J., Finocchi, F., and Noguera, C.: Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 71, 16501 (2008).CrossRefGoogle Scholar
Noguera, C. and Goniakowski, J.: Polarity in oxide nano-objects. Chem. Rev. 113, 40734105 (2013).CrossRefGoogle ScholarPubMed
Niederberger, M. and Cölfen, H.: Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 8, 32713287 (2006).CrossRefGoogle ScholarPubMed
Cölfen, H. and Antonietti, M.: Mesocrystals and Nonclassical Crystallization (Wiley, Chichester, England, Hoboken, New Jersey, 2008).CrossRefGoogle Scholar
Zhang, X., Shen, Z., Liu, J., Kerisit, S.N., Bowden, M.E., Sushko, M.L., de Yoreo, J.J., and Rosso, K.M.: Direction-specific interaction forces underlying zinc oxide crystal growth by oriented attachment. Nat. Commun. 8, 835 (2017).CrossRefGoogle ScholarPubMed
Spoto, G., Gribov, E.N., Ricchiardi, G., Damin, A., Scarano, D., Bordiga, S., Lamberti, C., and Zecchina, A.: Carbon monoxide MgO from dispersed solids to single crystals: A review and new advances. Prog. Surf. Sci. 76, 71146 (2004).CrossRefGoogle Scholar
Diebold, U., Li, S-C., and Schmid, M.: Oxide surface science. Annu. Rev. Phys. Chem. 61, 129148 (2010).CrossRefGoogle ScholarPubMed
Erickson, L.E., Koodali, R.T., and Richards, R.M.: Nanoscale Materials in Chemistry: Environmental Applications (American Chemical Society, Washington, 2010).CrossRefGoogle Scholar
Berger, T. and Diwald, O.: Chapter 9: Defects in Metal Oxide Nanoparticle Powders: In Defects at Oxide Surfaces, Jupille, J. and Thornton, G., 273302 eds. (Springer International Publishing, Switzerland, 2015).Google Scholar
Sterrer, M., Berger, T., Diwald, O., Knözinger, E., Sushko, P.V., and Shluger, A.L.: Chemistry at corners and edges: Generation and adsorption of H atoms on the surface of MgO nanocubes. J. Chem. Phys. 123, 064714 (2005).CrossRefGoogle ScholarPubMed
Schneider, J., Franke, M., Gurrath, M., Röckert, M., Berger, T., Bernardi, J., Meyer, B., Steinrück, H-P., Lytken, O., and Diwald, O.: Porphyrin metalation at MgO surfaces: A spectroscopic and quantum mechanical study on complementary model systems. Chem.-Eur. J. 22, 17441749 (2016).CrossRefGoogle Scholar
Altman, I.S., Agranovski, I.E., and Choi, M.: On nanoparticle surface growth: MgO nanoparticle formation during a Mg particle combustion. Appl. Phys. Lett. 84, 51305132 (2004).CrossRefGoogle Scholar
Gajdardziska-Josifovska, M. and Sharma, R.: Interaction of oxide surfaces with water: Environmental transmission electron microscopy of MgO hydroxylation. Microsc. Microanal. 11, 524533 (2005).CrossRefGoogle ScholarPubMed
Scarano, D., Bertarione, S., Cesano, F., Spoto, G., and Zecchina, A.: Imaging polycrystalline and smoke MgO surfaces with atomic force microscopy: A case study of high resolution image on a polycrystalline oxide. Surf. Sci. 570, 155166 (2004).CrossRefGoogle Scholar
Baumann, S.O., Schneider, J., Sternig, A., Thomele, D., Stankic, S., Berger, T., Grönbeck, H., and Diwald, O.: Size effects in MgO cube dissolution. Langmuir 31, 27702776 (2015).CrossRefGoogle ScholarPubMed
Siedl, N., Koller, D., Sternig, A.K., Thomele, D., and Diwald, O.: Photoluminescence quenching in compressed MgO nanoparticle systems. Phys. Chem. Chem. Phys. 16, 83398345 (2014).CrossRefGoogle ScholarPubMed
Elser, M.J., Berger, T., Brandhuber, D., Bernardi, J., Diwald, O., and Knözinger, E.: Particles coming together: Electron centers in adjoined TiO2 nanocrystals. J. Phys. Chem. B 110, 76057608 (2006).CrossRefGoogle ScholarPubMed
Baumann, S.O., Elser, M.J., Auer, M., Bernardi, J., Hüsing, N., and Diwald, O.: Solid-solid interface formation in TiO2 nanoparticle networks. Langmuir 27, 19461953 (2011).CrossRefGoogle ScholarPubMed
Foster, M., D’Agostino, M., and Passno, D.: Water on MgO(100)—An infrared study at ambient temperatures. Surf. Sci. 590, 3141 (2005).CrossRefGoogle Scholar
Fenter, P. and Lee, S.S.: Hydration layer structure at solid–water interfaces. MRS Bull. 39, 10561061 (2014).CrossRefGoogle Scholar
Zhang, Z., Fenter, P., Cheng, L., Sturchio, N.C., Bedzyk, M.J., Předota, M., Bandura, A., Kubicki, J.D., Lvov, S.N., Cummings, P.T., Chialvo, A.A., Ridley, M.K., Bénézeth, P., Anovitz, L., Palmer, D.A., Machesky, M.L., and Wesolowski, D.J.: Ion adsorption at the rutile–water interface: Linking molecular and macroscopic properties. Langmuir 20, 49544969 (2004).CrossRefGoogle ScholarPubMed
Sternig, A., Koller, D., Siedl, N., Diwald, O., and McKenna, K.: Exciton formation at solid-solid interfaces: A systematic experimental and ab initio study on compressed MgO nanopowders. J. Phys. Chem. A 116, 1010310112 (2012).Google Scholar
Hayun, S., Tran, T., Ushakov, S.V., Thron, A.M., van Benthem, K., Navrotsky, A., and Castro, R.H.R.: Experimental methodologies for assessing the surface energy of highly hygroscopic materials: The case of nanocrystalline magnesia. J. Phys. Chem. C 115, 2392923935 (2011).CrossRefGoogle Scholar
Susman, M.D., Pham, H.N., Datye, A.K., Chinta, S., and Rimer, J.D.: Factors governing MgO(111) Faceting in the thermal decomposition of oxide precursors. Chem. Mater. 30, 26412650 (2018).CrossRefGoogle Scholar
van Santen, R.A.: Modern Heterogeneous Catalysis: An Introduction (Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim, Germany, 2017).CrossRefGoogle Scholar
Gheisi, A.G., Sternig, A.K., Redhammer, G., and Diwald, O.: Thin water films and magnesium hydroxide fiber growth. RSC Adv. 5, 8256482569 (2015).CrossRefGoogle Scholar
Schwaiger, R., Schneider, J., Bourret, G.R., and Diwald, O.: Hydration of magnesia cubes: A helium ion microscopy study. Beilstein J. Nanotechnol. 7, 302309 (2016).CrossRefGoogle ScholarPubMed
Baer, D.R., Engelhard, M.H., Johnson, G.E., Laskin, J., Lai, J., Mueller, K., Munusamy, P., Thevuthasan, S., Wang, H., Washton, N., Elder, A., Baisch, B.L., Karakoti, A., Kuchibhatla, S.V.N.T., and Moon, D.: Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. J. Vac. Sci. Technol., A 31, 50820 (2013).CrossRefGoogle ScholarPubMed
Shen, Z., Chun, J., Rosso, K.M., and Mundy, C.J.: Surface chemistry affects the efficacy of the hydration force between two ZnO$\left( {10\bar{1}\bar{0}} \right)$ surfaces. J. Phys. Chem. C 122, 1225912266 (2018).CrossRefGoogle Scholar
Welch, D.A., Woehl, T.J., Park, C., Faller, R., Evans, J.E., and Browning, N.D.: Understanding the role of solvation forces on the preferential attachment of nanoparticles in liquid. ACS Nano 10, 181187 (2016).CrossRefGoogle ScholarPubMed
Li, D., Nielsen, M.H., Lee, J.R.I., Frandsen, C., Banfield, J.F., and De Yoreo, J.J.: Direction-specific interactions control crystal growth by oriented attachment. Science 336, 10141018 (2012).CrossRefGoogle ScholarPubMed
Soltis, J.A. and Penn, R.L.: Chapter 11: Oriented Attachment and Nonclassical Formation in Iron Oxides, from Iron Oxides: From Nature to Applications, 243267 (Wiley-VCH Verlag GmbH & Co KGa, 2016, Boschstr. 12, 69469, Weinheim Germany.).Google Scholar
Raju, M., van Duin, A.C.T., and Fichthorn, K.A.: Mechanisms of oriented attachment of TiO2 nanocrystals in vacuum and humid environments: Reactive molecular dynamics. Nano Lett. 14, 18361842 (2014).CrossRefGoogle ScholarPubMed
Thomele, D., Bourret, G.R., Bernardi, J., Bockstedte, M., and Diwald, O.: Hydroxylation induced alignment of metal oxide nanocubes. Angew. Chem., Int. Ed. 56, 14071410 (2017).CrossRefGoogle ScholarPubMed
Gao, B., Arya, G., and Tao, A.R.: Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nat. Nanotechnol. 7, 433437 (2012).CrossRefGoogle ScholarPubMed
Castro, R.H.R., Gouvêa, D., and Wakai, F.: Sintering and nanostability: The thermodynamic perspective. J. Am. Ceram. Soc. 99, 11051121 (2016).CrossRefGoogle Scholar
Gheisi, A.R., Niedermaier, M., Tippelt, G., Lottermoser, W., Bernardi, J., and Diwald, O.: Iron precursor decomposition in the magnesium combustion flame: A new approach for the synthesis of particulate metal oxide nanocomposites. Part. Part. Syst. Charact. 34, 1700109 (2017).CrossRefGoogle Scholar
Bordia, R.K., Kang, S-J.L., and Olevsky, E.A.: Current understanding and future research directions at the onset of the next century of sintering science and technology. J. Am. Ceram. Soc. 100, 23142352 (2017).CrossRefGoogle Scholar
Lu, K.: Sintering of nanoceramics. Int. Mater. Rev. 53, 2138 (2008).CrossRefGoogle Scholar
Lu, K.: Nanoparticulate Materials (John Wiley & Sons, Inc., Hoboken, New Jersey, 2012).CrossRefGoogle Scholar
Phokha, S., Klinkaewnarong, J., Hunpratub, S., Boonserm, K., Swatsitang, E., and Maensiri, S.: Ferromagnetism in Fe-doped MgO nanoparticles. J. Mater. Sci.: Mater. Electron. 27, 3339 (2016).Google Scholar
Folly, W., Soriano, S., Sinnecker, J.P., and Novak, M.A.: Dynamic behavior of superparamagnetic iso-oriented magnesioferrite nanoparticles. Phys. B 384, 300302 (2006).CrossRefGoogle Scholar
Castro, R.H.R., Tôrres, R.B., Pereira, G.J., and Gouvêa, D.: Interface energy measurement of MgO and ZnO: Understanding the thermodynamic stability of nanoparticles. Chem. Mater. 22, 25022509 (2010).CrossRefGoogle Scholar
Thomele, D., Gheisi, A.R., Niedermaier, M., Elsässer, M.S., Bernardi, J., Grönbeck, H., and Diwald, O.: Thin water films and particle morphology evolution in nanocrystalline MgO. J. Am. Ceram. Soc. 116, 7698 (2018).Google Scholar
Berger, T., Monllor-Satoca, D., Jankulovska, M., Lana-Villarreal, T., and Gómez, R.: The electrochemistry of nanostructured titanium dioxide electrodes. ChemPhysChem 13, 28242875 (2012).CrossRefGoogle ScholarPubMed
Sun, L., Haidry, A.A., Fatima, Q., Li, Z., and Yao, Z.: Improving the humidity sensing below 30% RH of TiO2 with GO modification. Mater. Res. Bull. 99, 124131 (2018).CrossRefGoogle Scholar
Zhang, D., Yoshida, T., and Minoura, H.: Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface. Adv. Mater. 15, 814817 (2003).CrossRefGoogle Scholar
Lamberti, A., Chiodoni, A., Shahzad, N., Bianco, S., Quaglio, M., and Pirri, C.F.: Ultrafast room-temperature crystallization of TiO2 nanotubes exploiting water-vapor treatment. Sci. Rep. 5, 7808 (2015).CrossRefGoogle ScholarPubMed
Roy, P., Berger, S., and Schmuki, P.: TiO2 nanotubes: Synthesis and applications. Angew. Chem., Int. Ed. 50, 29042939 (2011).CrossRefGoogle ScholarPubMed
Huo, K., Wang, H., Zhang, X., Cao, Y., and Chu, P.K.: Heterostructured TiO2 nanoparticles/nanotube arrays: In situ formation from amorphous TiO2 nanotube arrays in water and enhanced photocatalytic activity. ChemPlusChem 77, 323329 (2012).CrossRefGoogle Scholar
Krengvirat, W., Sreekantan, S., Mohd Noor, A-F., Negishi, N., Kawamura, G., Muto, H., and Matsuda, A.: Low-temperature crystallization of TiO2 nanotube arrays via hot water treatment and their photocatalytic properties under visible-light irradiation. Mater. Chem. Phys. 137, 991998 (2013).CrossRefGoogle Scholar
Liu, J., Liu, Z., Zhang, T., Zhai, J., and Jiang, L.: Low-temperature crystallization of anodized TiO2 nanotubes at the solid-gas interface and their photoelectrochemical properties. Nanoscale 5, 61396144 (2013).CrossRefGoogle ScholarPubMed
Chen, Z. and Zhou, K.: Surface morphology, phase structure and property evolution of anodized titanium during water vapor exposure. Surf. Coat. Technol. 263, 6165 (2015).CrossRefGoogle Scholar
Hu, J., Zhu, K., Chen, L., Kubel, C., and Richards, R.: MgO(111) Nanosheets with unusual surface activity. J. Phys. Chem. C 111, 1203812044 (2007).CrossRefGoogle Scholar
Cadigan, C.A., Corpuz, A.R., Lin, F., Caskey, C.M., Finch, K.B.H., Wang, X., and Richards, R.M.: Nanoscale (111) faceted rock-salt metal oxides in catalysis. Catal. Sci. Technol. 3, 900911 (2013).CrossRefGoogle Scholar
Lu, K.: Nanoparticulate Materials: Synthesis, Characterization, and Processing (Wiley, Hoboken, New Jersey, 2013).Google Scholar
Geysermans, P., Finocchi, F., Goniakowski, J., Hacquart, R., and Jupille, J.: Combination of (100), (110) and (111) facets in MgO crystals shapes from dry to wet environment. Phys. Chem. Chem. Phys. 11, 22282233 (2009).CrossRefGoogle ScholarPubMed
Sternig, A., Klacar, S., Bernardi, J., Stöger-Pollach, M., Grönbeck, H., and Diwald, O.: Phase separation at the nanoscale: Structural properties of BaO segregates on MgO-based nanoparticles. J. Phys. Chem. C 115, 1585315861 (2011).CrossRefGoogle Scholar
Barnard, A.S.: Modelling of nanoparticles: Approaches to morphology and evolution. Rep. Prog. Phys. 73, 86502 (2010).CrossRefGoogle Scholar
Guo, H. and Barnard, A.S.: Thermodynamic modelling of nanomorphologies of hematite and goethite. J. Mater. Chem. 21, 11566 (2011).CrossRefGoogle Scholar
Gheisi, A., Sternig, A., Rangus, M., Redhammer, G., Hartmann, M., and Diwald, O.: Spontaneous growth of magnesium hydroxide fibers at ambient conditions. Cryst. Growth Des. 14, 42364239 (2014).CrossRefGoogle Scholar
Rogers, N.J., Franklin, N.M., Apte, S.C., and Batley, G.E.: The importance of physical and chemical characterization in nanoparticle toxicity studies. Integr. Environ. Assess. Manage. 3, 303304 (2007).CrossRefGoogle ScholarPubMed
Söhnel, O.: Electrolyte crystal-aqueous solution interfacial tensions from crystallization data. J. Cryst. Growth 57, 101108 (1982).CrossRefGoogle Scholar
Kaden, W.E., Pomp, S., Sterrer, M., and Freund, H-J.: Insights into silica bilayer hydroxylation and dissolution. Top. Catal. 60, 471480 (2017).CrossRefGoogle Scholar
Brown, M.A., Redondo, A.B., Sterrer, M., Winter, B., Pacchioni, G., Abbas, Z., and van Bokhoven, J.A.: Measure of surface potential at the aqueous-oxide nanoparticle interface by XPS from a liquid microjet. Nano Lett. 13, 54035407 (2013).CrossRefGoogle ScholarPubMed
Tao, F.F. and Crozier, P.A.: Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 116, 34873539 (2016).CrossRefGoogle ScholarPubMed
Tao, F.F. and Salmeron, M.: In situ studies of chemistry and structure of materials in reactive environments. Science 331, 171174 (2011).CrossRefGoogle ScholarPubMed