Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T19:25:12.261Z Has data issue: false hasContentIssue false

Thin film growth of the 2122-phase of BCSCO superconductor with high degree of crystalline perfection

Published online by Cambridge University Press:  31 January 2011

K.K. Raina
Affiliation:
Center for Electronic Materials, Electrical Engineering Department, Texas A&M University, College Station, Texas 77843-3128
S. Narayanan
Affiliation:
Center for Electronic Materials, Electrical Engineering Department, Texas A&M University, College Station, Texas 77843-3128
R.K. Pandey
Affiliation:
Center for Electronic Materials, Electrical Engineering Department, Texas A&M University, College Station, Texas 77843-3128
Get access

Abstract

Thin films of the 80 K-phase of BiCaSrCu-oxide superconductor having the composition of Bi2Ca1.05Sr2.1Cu2.19Ox and high degree of crystalline perfection have been grown on c-axis oriented twin free single crystal substrates of NdGaO3. This has been achieved by carefully establishing the growth conditions of the liquid phase epitaxy (LPE) experiments. The temperature regime of 850 °C to 830 °C and quenching of the specimens on the termination of the growth period are found to be pertinent for the growth of quasi-single crystalline superconducting BCSCO films on NdGaO3 substrates. The TEM analysis reveals a single crystalline nature of these films which exhibit 100% reflectivity in infrared regions at liquid nitrogen temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Maeda, H., Tanaka, Y., Fukutomi, M., and T. Asano, Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
2.Steinbeck, J., Tsaur, B. Y., Anderson, A. C., and Strauss, A. J., Appl. Phys. Lett. 54, 466 (1989).CrossRefGoogle Scholar
3.Marshall, A.F., Oh, B., Spielman, S., Lee, Mark, Eom, C.B., Barton, R. W., Hammond, R. H., Kapitulnik, A., Beasley, M. R., and Geballe, T. H., Appl. Phys. Lett. 53, 426 (1988).CrossRefGoogle Scholar
4.Kuroda, K., Mukdida, M., Yamamoto, M., and Miyazawa, S., Jpn. J. Appl. Phys. 27, L625 (1988).CrossRefGoogle Scholar
5.Satoh, T., Yoshitake, T., Miura, S., Fujita, J., Kubo, Y., and Igarashi, H., Appl. Phys. Lett. 55, 702 (1989).CrossRefGoogle Scholar
6.Ichikawa, Y., Adachi, H., Hirochi, K., Setsune, K., Hatta, S., and Wasa, K., Phys. Rev. 38, 765 (1988).CrossRefGoogle Scholar
7.Lindberg, P. A. P., Shen, Z.X., Landau, I., Spicer, W.E., Eom, C.B., and Geballe, T.H., Appl. Phys. Lett. 53, 529 (1988).CrossRefGoogle Scholar
8.Dew, S. K., Osborne, M. R., Muehern, P. J., and Parsons, R. R., Appl. Phys. Lett. 54, 1929 (1989).CrossRefGoogle Scholar
9.Nakamura, K., Sato, J., Kaisa, M., and Ogawa, K., Appl. Phys. Lett. 28, L437 (1989).Google Scholar
10.Tanaka, A., Machi, T., Kamehara, N., and Niwa, K., Appl. Phys. Lett. 54, 136 (1989).Google Scholar
11.Hakurahu, Y., Higo, S., and Ogushi, T., Appl. Phys. Lett. 55, 1569 (1989).CrossRefGoogle Scholar
12.Li, H. C., Linker, G., Ratzel, F., Smithey, R., and Geerk, J., Appl. Phys. Lett. 52, 1089 (1988).Google Scholar
13.Kwo, J., Hong, M., Trevor, D. J., Fleming, R. M., White, A. E., Farrow, R. C., Kortan, A.R., and Short, K.T., Appl. Phys. Lett. 53, 2683 (1988).CrossRefGoogle Scholar
14.Kwo, J., Hsieh, T.C., Fleming, R.M., Hong, M., Liou, H., Davidson, B.A., and Feldman, L. C., Phys. Rev. 36, 4039 (1987).CrossRefGoogle Scholar
15.Fork, D.K., BoyceM, J.B., Ponce, F.A., Johnson, R.I., Anderson, G. B., Connell, G. A. N., Eom, C. B., and Gebaile, T. H., Appl. Phys. Lett. 53, 337 (1988).CrossRefGoogle Scholar
16.Ivanov, Z. and Brorsson, G., Appl. Phys. Lett. 55, 2123 (1989).CrossRefGoogle Scholar
17.Tabata, H., Kawai, T., Kanai, M., Murata, O., and Kawai, S., Appl. Phys. Lett. 28, L430 (1989).Google Scholar
18.Bohandy, J., Agostinelli, E., Kim, B.F., Green, W.J., Philips, T.E., Adrian, F. J., and Moorjani, K., J. Appl. Phys. 65, 4447 (1989).CrossRefGoogle Scholar
19.Kanai, M., Kawai, T., Kawai, S., and Tabata, H., Appl. Phys. Lett. 54, 1802 (1989).CrossRefGoogle Scholar
20.Liu, R.S., Huang, Y.T., Wu, P.T., and Chu, J.J., Jpn. J. Appl. Phys. 22, L1470 (1988).CrossRefGoogle Scholar
21.Belt, R.F., Ings, J., and Diercks, G., Appl. Phys. Lett. 56, 1805 (1990).CrossRefGoogle Scholar
22.Yang, C. S. and Yue, A.S., J. Cryst. Growth 99, 951 (1990).CrossRefGoogle Scholar
23.Balestrino, G., Foglietti, V., Marinelli, M., Milani, E., Paoletti, A., and Paroli, P., IEEE Trans. Magn. 27, 1589 (1991).CrossRefGoogle Scholar
24.Balestrino, G., Leo, R. D., Marinelli, M., Milani, E., Paoletti, A., and Paroli, P., Physica C 162–164, 115 (1989).CrossRefGoogle Scholar
25.Narayanan, S., Raina, K. K., Pandey, R. K., and Brandle, C. D., Mater. Lett. 11, 212 (1991).CrossRefGoogle Scholar
26.Narayanan, S., Thesis, M. S., Texas A&M University (1991).Google Scholar
27.Balestrino, G., Marinelli, M., Milani, E., Paoletti, A., and Paroli, P., J. Appl. Phys. 68, 361 (1990).CrossRefGoogle Scholar
28.He, Q., Yu, D., Chang, S., Wang, R., and Zhang, H., Phys. Lett. 133, 441 (1988).CrossRefGoogle Scholar
29.Gadkari, S. C., Muthe, K. P., Singh, K. D., Sabharwal, S. C., and Gupta, M. K., J. Cryst. Growth 102, 685 (1990).CrossRefGoogle Scholar