Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T21:10:52.493Z Has data issue: false hasContentIssue false

Thermodynamic properties of lanthanum, neodymium, gadolinium hafnates (Ln2Hf2O7): Calorimetric and KEMS studies

Published online by Cambridge University Press:  16 July 2019

Viktor A. Vorozhtcov
Affiliation:
Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
Valentina L. Stolyarova*
Affiliation:
Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
Mikhail V. Chislov
Affiliation:
Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
Irina A. Zvereva
Affiliation:
Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
Elizaveta P. Simonenko
Affiliation:
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991, Russia
Nikolay P. Simonenko
Affiliation:
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991, Russia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Using the data obtained by Knudsen effusion mass spectrometry, the standard formation thermodynamic properties of La2Hf2O7, Nd2Hf2O7, and Gd2Hf2O7 were calculated in the present study at high temperatures. Based on the results obtained, it was shown that the standard formation Gibbs energies of La2Hf2O7, Nd2Hf2O7, and Gd2Hf2O7 from the elements at the temperature 2445 K were consistent with the empirical rule concerning decrease of stability of pyrochlore hafnate phase with decrease in lanthanoid ionic radius. The La2Hf2O7 and Gd2Hf2O7 heat capacities were obtained in the present study by differential scanning calorimetry. These data were used along with those found earlier to evaluate the standard formation Gibbs energies of La2Hf2O7 and Gd2Hf2O7 from the elements at the temperature 298 K, which equal (−3937 ± 10) kJ/mol and (−3895 ± 10) kJ/mol, respectively. The thermodynamic properties of La2Hf2O7, Nd2Hf2O7, and Gd2Hf2O7 estimated in a wide temperature range allowed consideration of reliability of data available in the literature.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stolyarova, V.L.: Mass spectrometric thermodynamic studies of oxide systems and materials. Russ. Chem. Rev. 85, 60 (2016).CrossRefGoogle Scholar
Glushkova, V.B., Kravchinskaya, M.V., Kuznetsov, A.K., and Tikhonov, P.A.: Hafnium Dioxide and its Compounds with Rare Earth Oxides (Nauka, Leningrad, 1984).Google Scholar
Cao, X.Q., Vassen, R., and Stoever, D.: Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 24, 1 (2004).CrossRefGoogle Scholar
Nicholls, J.R., Lawson, K.J., Johnstone, A., and Rickerby, D.S.: Methods to reduce the thermal conductivity of EB-PVD TBCs. Surf. Coat. Technol. 151–152, 383 (2002).CrossRefGoogle Scholar
Chubarov, D.A. and Matveev, P.V.: New ceramic materials for thermal barrier coatings using in GTE turbine blades. Aviac. Mater. Tehnol., 43 (2013).Google Scholar
Kablov, E.N. and Toloraiya, V.N.: VIAM—Founder of domestic technology for casting single-crystal turbine blades of GTE and GTS. Aviac. Mater. Tehnol., 105 (2012).Google Scholar
Clarke, D.R. and Phillpot, S.R.: Thermal barrier coating materials. Mater. Today 8, 22 (2005).CrossRefGoogle Scholar
Miller, R.A.: Thermal barrier coatings for aircraft engines: History and directions. J. Therm. Spray Technol. 6, 35 (1997).CrossRefGoogle Scholar
Navrotsky, A.: Thermochemical insights into refractory ceramic materials based on oxides with large tetravalent cations. J. Mater. Chem. 15, 1883 (2005).CrossRefGoogle Scholar
Curtis, C.E., Doney, L.M., and Johnson, J.R.: Some properties of hafnium oxide, hafnium silicate, calcium hafnate, and hafnium carbide. J. Am. Ceram. Soc. 37, 458 (1954).CrossRefGoogle Scholar
Ibégazène, H., Alpérine, S., and Diot, C.: Yttria-stabilized hafnia-zirconia thermal barrier coatings: The influence of hafnia addition on TBC structure and high-temperature behaviour. J. Mater. Sci. 30, 938 (1995).CrossRefGoogle Scholar
Wang, J., Li, H.P., and Stevens, R.: Hafnia and hafnia-toughened ceramics. J. Mater. Sci. 27, 5397 (1992).CrossRefGoogle Scholar
Larsen, E.M.: Recent advances in the chemistry of zirconium and hafnium. J. Chem. Educ. 28, 529 (1951).CrossRefGoogle Scholar
Shlyakhtina, A.V. and Shcherbakova, L.G.: New solid electrolytes of the pyrochlore family. Russ. J. Electrochem. 48, 1 (2012).CrossRefGoogle Scholar
López-Cota, F.A., Cepeda-Sánchez, N.M., Díaz-Guillén, J.A., Dura, O.J., López de la Torre, M.A., Maczka, M., Ptak, M., and Fuentes, A.F.: Electrical and thermophysical properties of mechanochemically obtained lanthanide hafnates. J. Am. Ceram. Soc. 100, 1994 (2017).CrossRefGoogle Scholar
Müller, J., Schröder, U., Böscke, T.S., Müller, I., Böttger, U., Wilde, L., Sundqvist, J., Lemberger, M., Kücher, P., Mikolajick, T., and Frey, L.: Ferroelectricity in yttrium-doped hafnium oxide. J. Appl. Phys. 110, 114113 (2011).CrossRefGoogle Scholar
Mueller, S., Adelmann, C., Singh, A., Van Elshocht, S., Schroeder, U., and Mikolajick, T.: Ferroelectricity in Gd-doped HfO2 thin films. ECS J. Solid State Sci. Technol. 1, N123 (2012).CrossRefGoogle Scholar
Chen, L., Xu, Y., Sun, Q.Q., Zhou, P., Wang, P.F., Ding, S.J., and Zhang, D.W.: Atomic-layer-deposited HfLaO-based resistive switching memories with superior performance. IEEE Electron Device Lett. 31, 1296 (2010).Google Scholar
Vorozhtcov, V.A., Stolyarova, V.L., Lopatin, S.I., Simonenko, E.P., Simonenko, N.P., Sakharov, K.A., Sevastyanov, V.G., and Kuznetsov, N.T.: Vaporization and thermodynamic properties of lanthanum hafnate. J. Alloys Compd. 735, 2348 (2018).CrossRefGoogle Scholar
Sevastyanov, V.G., Simonenko, E.P., Simonenko, N.P., Stolyarova, V.L., Lopatin, S.I., and Kuznetsov, N.T.: Synthesis, vaporization and thermodynamic properties of superfine Nd2Hf2O7 and Gd2Hf2O7. Eur. J. Inorg. Chem. 2013, 4636 (2013).CrossRefGoogle Scholar
Sevastyanov, V.G., Simonenko, E.P., V Sevastyanov, D., Simonenko, N.P., Stolyarova, V.L., Lopatin, S.I., and Kuznetsov, N.T.: Synthesis, vaporization, and thermodynamics of ultrafine Nd2Hf2O7 powders. Russ. J. Inorg. Chem. 58, 1 (2013).CrossRefGoogle Scholar
Stolyarova, V.L., Vorozhtcov, V.A., and Lopatin, S.I.: Percularities of thermodynamic description of systems based on hafnia and rare earth oxides at high temperatures. Trans. Kola Sci. Cent. 9, 104 (2018).Google Scholar
Babu, R. and Nagarajan, K.: Calorimetric measurements on rare earth pyrohafnates RE2Hf2O7 (RE = La, Eu, Gd). J. Alloys Compd. 265, 137 (1998).CrossRefGoogle Scholar
Ushakov, S.V., Navrotsky, A., Tangeman, J.A., and Helean, K.B.: Energetics of defect fluorite and pyrochlore phases in lanthanum and gadolinium hafnates. J. Am. Ceram. Soc. 90, 1171 (2007).CrossRefGoogle Scholar
Kopan’, A.R., Gorbachuk, M.P., Lakiza, S.M., and Tishchenko, Y.S.: Calorimetric study of the La2Hf2O7 heat capacity in the range 57–302 K. Powder Metall. Met. Ceram. 54, 696 (2016).CrossRefGoogle Scholar
Stolyarova, V.L., Vorozhtcov, V.A., Lopatin, S.I., and Shilov, A.L.: Thermodynamic properties of the La2O3–HfO2 system at high temperatures. Thermochim. Acta 668, 87 (2018).CrossRefGoogle Scholar
Paputsky, Y.N., Krzhizhanovskaya, V.A., and Glushkova, V.B.: The enthalpy of formation of hafnates and zirconates of rare earth elements. Izv. Akad. Nauk SSSR, Neorg. Mater. 10, 1551 (1974).Google Scholar
Arseniev, P.A., Glushkova, V.B., Evdokimov, A.A., Keller, E.K., Kravchenko, V.B., Kravchinskaya, M.V., Krzhizhanovskaya, V.A., Kuznetsov, A.K., Kurbanov, K.M., Potemkin, A.V., Tikhonov, P.A., and Tseytlin, M.N.: Compounds of Rare Earth Elements. Zirconates, Hafnates, Niobates, Tantalates and Antimonates (Nauka, Moscow, 1985).Google Scholar
Kablov, E.N., Stolyarova, V.L., Lopatin, S.I., Vorozhtcov, V.A., Karachevtsev, F.N., and Folomeikin, Y.I.: High-temperature mass spectrometric study of the vaporization processes and thermodynamic properties in the Gd2O3–Y2O3–HfO2 system. Rapid Commun. Mass Spectrom. 31, 1137 (2017).CrossRefGoogle ScholarPubMed
Kablov, E.N., Stolyarova, V.L., Vorozhtcov, V.A., Lopatin, S.I., Fabrichnaya, O.В., Ilatovskaya, M.O., and Karachevtsev, F.N.: Vaporization and thermodynamics of ceramics based on the La2O3–Y2O3–HfO2 system studied by the high-temperature mass spectrometric method. Rapid Commun. Mass Spectrom. 32, 686 (2018).CrossRefGoogle ScholarPubMed
Belov, A.N. and Semenov, G.A.: Mass-spectrometric investigation of evaporation of ternary solid solutions of ZrO2–HfO2–Y2O3 system. Izv. Akad. Nauk SSSR, Neorg. Mater. 25, 994 (1989).Google Scholar
Sevastyanov, V.G., Simonenko, E.P., Simonenko, N.P., Stolyarova, V.L., Lopatin, S.I., and Kuznetsov, N.T.: Synthesis, vaporization and thermodynamics of ceramic powders based on the Y2O3–ZrO2–HfO2 system. Mater. Chem. Phys. 153, 78 (2015).CrossRefGoogle Scholar
Vorozhtcov, V.A., Shilov, A.L., and Stolyarova, V.L.: Features of thermodynamic description of properties of Gd2O3–Y2O3‒HfO2 based ceramics. Russ. J. Gen. Chem. 89, 452 (2019).CrossRefGoogle Scholar
Shilov, A.L., Stolyarova, V.L., Vorozhtcov, V.A., and Lopatin, S.I.: Thermodynamic description of the Gd2O3–Y2O3–HfO2 and La2O3–Y2O3–HfO2 systems at high temperatures. Calphad 65, 165 (2019).CrossRefGoogle Scholar
Belov, A.N. and Semenov, G.A.: Thermodynamics of binary solid solutions of zirconium, hafnium and yttrium oxides from high temperature mass spectrometry data. Russ. J. Phys. Chem. 59, 589 (1985).Google Scholar
Marushkin, K.N. and Alikhanyan, A.S.: A study of the quasibinary systems HfO2–ZrO2, ZrO2–Y2O3, and HfO2–Y2O3. Russ. J. Inorg. Chem. 36, 2637 (1991).Google Scholar
Kablov, E.N., Folomeikin, Y.I., Stolyarova, V.L., and Lopatin, S.I.: Mass-spectrometric study of vaporization of high refractory ceramics. Dokl. Phys. Chem. 463, 150 (2015).CrossRefGoogle Scholar
Semenov, G.A., Kuligina, L.A., Teterin, G.A., Menchuk, E.M., and Shkol’nikov, T.M.: Mass-spectrometric investigation of components of solid solutions in HfO2–Sc2O3 system. Sov. Prog. Chem. 52, 1 (1986).Google Scholar
Semenov, G.A., Belov, A.N., Baydin, V.N., Ivanauskas, P.I., Vyšniauskas, V.V., Majauskas, J.S., Karaulov, A.G., and Taranuha, N.V.: Sublimation of refractory ceramics based on the solid solutions in the systems HfO2–ZrO2 and Y2O3–ZrO2. Work. Acad. Sci. Lith. SSR. Ser. B 5, 115 (1977).Google Scholar
Ionov, N.I.: Ionizatsiya molekul KJ, NAJ i CsCl elektronami (Ionization of KI, NaI, and CsCl molecules by electrons). Dokl. Akad. Nauk SSSR 59, 467 (1948).Google Scholar
Stolyarova, V.L. and Semenov, G.A.: Mass Spectrometric Study of the Vaporization of Oxide Systems (John Wiley, Chichester, 1994).Google Scholar
Stolyarova, V.L.: Review KEMS 2012 till 2017. Calphad 64, 258 (2019).CrossRefGoogle Scholar
Kablov, E.N., Stolyarova, V.L., Lopatin, S.I., Vorozhtcov, V.A., Karachevtsev, F.N., and Folomeikin, Y.I.: Mass spectrometric study of thermodynamic properties in the Gd2O3–Y2O3 system at high temperatures. Rapid Commun. Mass Spectrom. 31, 538 (2017).CrossRefGoogle ScholarPubMed
Kohler, F.: Zur Berechnung der thermodynamischen Daten eines ternären Systems aus den zugehörigen binären Systemen. Monatsh. Chem. 91, 738 (1960).CrossRefGoogle Scholar
Barker, J.A.: Cooperative orientation effects in solutions. J. Chem. Phys. 20, 1526 (1952).CrossRefGoogle Scholar
Kandan, R., Prabhakara Reddy, B., Panneerselvam, G., and Mudali, U.K.: Enthalpy measurements on rare earth hafnates RE2O3·2HfO2 (s) (RE = Sm, Eu, Dy). J. Therm. Anal. Calorim. 131, 2687 (2018).CrossRefGoogle Scholar
Lutique, S., Javorskỳ, P., Konings, R.J.M., Krupa, J-C., van Genderen, A.C.G., van Miltenburg, J.C., and Wastin, F.: The low-temperature heat capacity of some lanthanide zirconates. J. Chem. Thermodyn. 36, 609 (2004).CrossRefGoogle Scholar
Andrievskaya, E.R.: Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides. J. Eur. Ceram. Soc. 28, 2363 (2008).CrossRefGoogle Scholar
Gurvich, L.V., Veitz, I.V., Medvedev, V.A., Bergman, G.A., Jungman, V.S., Khachkuruzov, G.A., and Iorish, V.S.: Thermodynamic Properties of Individual Substances, Vol. 4 (Nauka, Moscow, 1982).Google Scholar
Konings, R.J.M., Beneš, O., Kovács, A., Manara, D., Sedmidubský, D., Gorokhov, L., Iorish, V.S., Yungman, V., Shenyavskaya, E., and Osina, E.: The thermodynamic properties of the f-elements and their compounds. Part 2. The lanthanide and actinide oxides. J. Phys. Chem. Ref. Data 43, 013101 (2014).CrossRefGoogle Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
Simoncic, P. and Navrotsky, A.: Systematics of phase transition and mixing energetics in rare earth, yttrium, and scandium stabilized zirconia and hafnia. J. Am. Ceram. Soc. 90, 2143 (2007).CrossRefGoogle Scholar
Mandal, B.P. and Tyagi, A.K.: Preparation and high temperature-XRD studies on a pyrochlore series with the general composition Gd2−xNdxZr2O7. J. Alloys Compd. 437, 260 (2007).CrossRefGoogle Scholar
Konings, R.J.M. and Beneš, O.: The thermodynamic properties of the f-elements and their compounds. I. The lanthanide and actinide metals. J. Phys. Chem. Ref. Data 39, 043102 (2010).CrossRefGoogle Scholar
Sakharov, K.A., Simonenko, E.P., Simonenko, N.P., Vaganova, M.L., Lebedeva, Y.E., Chaynikova, A.S., Osin, I.V., Sorokin, O.Y., Grashchenkov, D.V., Sevastyanov, V.G., Kuznetsov, N.T., and Kablov, E.N.: Glycol–citrate synthesis of fine-grained oxides La2−xGdxZr2O7 and preparation of corresponding ceramics using FAST/SPS process. Ceram. Int. 44, 7647 (2018).CrossRefGoogle Scholar
Simonenko, N.P., Sakharov, K.A., Simonenko, E.P., Sevastyanov, V.G., and Kuznetsov, N.T.: Glycol–citrate synthesis of ultrafine lanthanum zirconate. Russ. J. Inorg. Chem. 60, 1452 (2015).CrossRefGoogle Scholar
Popov, V.V., Menushenkov, A.P., Yaroslavtsev, A.A., Zubavichus, Y.V., Gaynanov, B.R., Yastrebtsev, A.A., Leshchev, D.S., and Chernikov, R.V.: Fluorite–pyrochlore phase transition in nanostructured Ln2Hf2O7 (Ln = La–Lu). J. Alloys Compd. 689, 669 (2016).CrossRefGoogle Scholar
Supplementary material: File

Vorozhtcov et al. supplementary material

Tables S1-S2 and Figures S1-S2

Download Vorozhtcov et al. supplementary material(File)
File 419.3 KB