Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T12:36:56.690Z Has data issue: false hasContentIssue false

Thermodynamic modeling of La2O3–SrO–Mn2O3–Cr2O3 for solid oxide fuel cell applications

Published online by Cambridge University Press:  30 May 2012

E. Povoden-Karadeniz*
Affiliation:
Nonmetallic Inorganic Materials, Department of Materials, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zurich, Switzerland
M. Chen
Affiliation:
DTU Energy Conversion, Department of Energy Conversion and Storage, Technical University of Denmark, 4000 Roskilde, Denmark
Toni Ivas
Affiliation:
Nonmetallic Inorganic Materials, Department of Materials, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zurich, Switzerland
A.N. Grundy
Affiliation:
Concast AG, 8002 Zurich, Switzerland
L.J. Gauckler
Affiliation:
Nonmetallic Inorganic Materials, Department of Materials, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zurich, Switzerland
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The thermodynamic La–Sr–Mn–Cr–O oxide database is obtained as an extension of thermodynamic descriptions of oxide subsystems using the calculation of phase diagrams approach. Concepts of the thermodynamic modeling of solid oxide phases are discussed. Gibbs energy functions of SrCrO4, Sr2.67Cr2O8, Sr2CrO4, and SrCr2O4 are presented, and thermodynamic model parameters of La–Sr–Mn–Chromite perovskite are given. Experimental solid solubilities and nonstoichiometries in La1−xSrxCrO3−δ and LaMn1−xCrxO3−δ are reproduced by the model. The presented oxide database can be used for applied computational thermodynamics of traditional lanthanum manganite cathode with Cr-impurities. It represents the fundament for extensions to higher orders, aiming on thermodynamic calculations in noble symmetric solid oxide fuel cells.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ruiz-Morales, J.C., Marrero-Lόpez, D., Canales-Vázquez, J., and Irvine, J.T.S.: Symmetric and reversible solid oxide fuel cells. RSC Adv. 1, 14031414 (2011).CrossRefGoogle Scholar
2.Bastidas, D.M., Tao, S., and Irvine, J.T.S.: A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes. J. Mater. Chem. 16, 16031605 (2006).CrossRefGoogle Scholar
3.Ruiz-Morales, J.C., Canales-Vázquez, J., Peña-Martínez, J, Marrero-López, D., and Núñez, P.: On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3-δ as both anode and cathode material with improved microstructure in solid oxide fuel cells. Electrochim. Acta 52, 278284 (2006).CrossRefGoogle Scholar
4.Badwal, S.P.S., Deller, R., Foger, K., Ramprakash, Y., and Zhang, J.P.: Interaction between chromia forming alloy interconnects and air electrode of solid oxide fuel cells. Solid State Ionics 99, 297310 (1997).CrossRefGoogle Scholar
5.Jiang, S.P., Zhang, J.P., and Foger, K.: Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells – III. Effect of air flow. J. Electrochem. Soc. 148, C447C455 (2001).CrossRefGoogle Scholar
6.Saunders, N. and Miodownik, A.P.: Calphad calculation of phase diagrams. In Pergamon Materials Series; Vol. 1. (Elsevier Science Ltd., Oxford, UK, 1998).Google Scholar
7.Lukas, H.L., Fries, S.G., and Sundman, B.: Computational Thermodynamics. The CALPHAD Method (Cambridge University Press, Cambridge, UK, 2007).CrossRefGoogle Scholar
8.Liu, Z-K.: First-principles calculations and Calphad modeling of thermodynamics. J. Phase Equilib. Diffus. 30, 517534 (2009).CrossRefGoogle Scholar
9.Dinsdale, A.T.: SGTE data for pure elements. Calphad 15, 317425 (1991).CrossRefGoogle Scholar
10.Andersson, J-O., Guillermet, A.F., Hillert, M., Jansson, B., and Sundman, B.: A compound-energy model of ordering in a phase with sites of different coordination numbers. Acta Metall. 34, 437 (1986).CrossRefGoogle Scholar
11.Hillert, M., Jansson, B., and Sundman, B.: Application of the compound-energy model to oxide systems. Z. Metallkd. 79, 8187 (1988).Google Scholar
12.Hillert, M.: The compound energy formalism. J. Alloys Compd. 320, 161176 (2001).CrossRefGoogle Scholar
13.Redlich, O. and Kister, A.T.: Algebraic representations of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345348 (1948).CrossRefGoogle Scholar
14.Grundy, A.N., Povoden, E., Ivas, T., and Gauckler, L.J.: Calculation of defect chemistry using the CALPHAD approach. Calphad 30, 3341 (2006).CrossRefGoogle Scholar
15.Sundman, B., Jansson, B., and Andersson, J-O.: The thermo-calc databank system. Calphad 9, 153190 (1985).CrossRefGoogle Scholar
16.Filonova, E.A., Demina, A.N., and Petrov, A.N.: Phase equilibria in the system LaMnO3-SrMnO3-SrCrO4-LacrO3. Russ. J. Inorg. Chem. 52, 771774 (2007).CrossRefGoogle Scholar
17.Grundy, A.N., Hallstedt, B., and Gauckler, L.J.: Thermodynamic assessment of the lanthanum-oxygen system. J. Phase Equilib. 22, 105113 (2001)CrossRefGoogle Scholar
18.Zinkevich, M., Geupel, S., Aldinger, F., Durygin, A., Saxena, S.K., Yang, M., and Liu, Z-K.: Phase diagram and thermodynamics of the La2O3-Ga2O3 system revisited. J. Phys. Chem. Solids 67, 19011907 (2006).CrossRefGoogle Scholar
19.Povoden, E., Grundy, A.N., and Gauckler, L.J.: Thermodynamic reassessment of the Cr-O system in the framework of solid oxide fuel cell (SOFC) research. J. Phase Equilib. Diffus. 27, 353362 (2006).Google Scholar
20.Povoden, E., Chen, M., Grundy, A.N., Ivas, T., and Gauckler, L.J.: Thermodynamic assessment of the La-Cr-O system. J. Phase Equilib. Diffus. 30, 1227 (2009).CrossRefGoogle Scholar
21.Povoden, E., Grundy, A.N., Gauckler, L.J.: Thermodynamic assessment of the Mn-Cr-O system for solid oxide fuel cell (SOFC) materials. Int. J. Mater. Res. 97, 569578 (2006).CrossRefGoogle Scholar
22.Grundy, A.N., Hallstedt, B., and Gauckler, L.J.: Assessment of the Mn-O system. J. Phase Equilib. 24, 2139 (2003).Google Scholar
23.Grundy, A.N., Chen, M., Hallstedt, B., and Gauckler, L.J.: Assessment of the La-Mn-O system. J. Phase Equilib. Diffus. 26, 131151 (2005).CrossRefGoogle Scholar
24.Grundy, A.N., Hallstedt, B., and Gauckler, L.J.: La1-xMn1-yO3-z perovskites modeled with and without antisite defects using the CALPHAD approach. Solid State Ionics 173, 1721 (2004).CrossRefGoogle Scholar
25.Grundy, A.N., Hallstedt, B., and Gauckler, L.J.: Experimental phase diagram determination and thermodynamic assessment of the La2O3-SrO system. Acta Mater. 50, 22092222 (2002).CrossRefGoogle Scholar
26.Grundy, A.N., Hallstedt, B., and Gauckler, L.J.: Assessment of the Sr-Mn-O system. J. Phase Equilib. Diffus. 25, 311319 (2004).CrossRefGoogle Scholar
27.Grundy, A.N., Hallstedt, B., and Gauckler, L.J.: Assessment of the La-Sr-Mn-O system. Calphad 28, 191201 (2004).CrossRefGoogle Scholar
28.Shannon, R.D. and Prewitt, C.T.: Effective ionic radii in oxides and fluorides. Acta Crystallogr., Sect. B: Struct. Sci 25, 925946 (1969).CrossRefGoogle Scholar
29.Hack, K., (Ed.): The SGTE Casebook: Thermodynamics at Work (Institute of Materials, London, 1996).Google Scholar
30.Yokokawa, H., Sakai, N., Kawada, T., and Dokiya, M.: Chemical thermodynamic considerations in sintering of LaCrO3-based perovskites. J. Electrochem. Soc. 138, 10181027 (1991).CrossRefGoogle Scholar
31.Jacob, K.T. and Abraham, K.P.: Phase relations in the system Sr-Cr-O and thermodynamic properties of SrCrO4 and Sr3Cr2O8. J. Phase Equilib. 21, 4653 (2000).CrossRefGoogle Scholar
32.Maruyama, T., Inoue, T., and Akashi, T.: Standard Gibbs energies of formation of SrCrO4 and Sr3Cr2O8. Mater. Trans., JIM 39, 11581161 (1998).CrossRefGoogle Scholar
33.Azad, A.M., Sudha, R., and Sreedharan, O.M.: The standard Gibbs energies of formation of ACrO4 (A=Ca, Sr or Ba) from emf-measurements. Thermochim. Acta 194, 129136 (1992).CrossRefGoogle Scholar
34.Akila, R. and Jacob, K.T.: The mobility of oxygen in CaF2. J. Appl. Electrochem. 20, 294300 (1990).CrossRefGoogle Scholar
35.Kisil, Y.K., Sharova, N.G., and Slobodin, B.V.: Phase formation in the system SrO-CrO3-Cr2O3. Inorg. Mater. 25, 14901491 (1989).Google Scholar
36.Castillo-Martínez, E. and Alario-Franco, M.A.: Revisiting the Sr-Cr(IV)-O system at high pressure and temperature with special reference to Sr3Cr2O7. Solid State Sci. 9, 564573 (2007).CrossRefGoogle Scholar
37.Negas, T. and Roth, R.S.: System SrO-Chromium oxide in air and oxygen. J. Res. Nat. Bur. Stand. A Phys. Chem. 73, 431442 (1969).CrossRefGoogle Scholar
38.Peck, D.H., Miller, M., and Hilpert, K.: Phase diagram studies in the SrO-Cr2O3-La2O3 system in air and under low oxygen partial pressure. Solid State Ionics 123, 5965 (1999).CrossRefGoogle Scholar
39.Hartl, K. and Braungart, R.: Strontiumchromate(V, VI), Sr2.67Va0.33(CrO4)1.33(CrO4)0.67, a high-temperature compound with defect-bariumphosphate-structure. Z. Naturforsch., B: Chem. Sci. 33, 952953 (1978) [in German].CrossRefGoogle Scholar
40.Miyoshi, S., Onuma, S., Kaimai, A., Matsumoto, H., Yashiro, K., Kawada, T., Mizusaki, J., and Yokokawa, H.: Chemical stability of La1-xSrxCrO3 in oxidizing atmospheres. J. Solid State Chem. 177, 41124118 (2004).CrossRefGoogle Scholar
41.Ruddlesden, S.N. and Popper, P.: The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 11, 5455 (1958).CrossRefGoogle Scholar
42.Peck, D-H., Miller, M., and Hilpert, K.: Vaporization and thermodynamics of La1-xSrxCrO3-δ investigated by Knudsen effusion mass spectrometry. Solid State Ionics 143, 401412 (2001).CrossRefGoogle Scholar
43.Cheng, J. and Navrotsky, A.: Energetics of La1-xAxCrO3-δ perovskites (A = Ca or Sr). J. Solid State Chem. 178, 234244 (2005).CrossRefGoogle Scholar
44.Mizusaki, J., Yamauchi, S., Fueki, K., and Ishikawa, A.: Nonstoichiometry of the perovskite-type oxide La1-xSrxCrO3-δ. Solid State Ionics 12, 119124 (1984).CrossRefGoogle Scholar
45.Hilpert, K., Steinbrech, R.W., Boroomand, F., Wessel, E., Meschke, F., Zuev, A., Teller, O., Nickel, H., and Singheiser, L.: Defect formation and mechanical stability of perovskites based on LaCrO3 for solid oxide fuel cells (SOFC). J. Eur. Cer. Soc. 23, 30093020 (2003).CrossRefGoogle Scholar
46.Yokokawa, H., Horita, T., Sakai, N., Yamaji, K., Brito, M.E., Xiong, Y-P., and Kishimoto, H.: Thermodynamic considerations on Cr poisoning in SOFC cathodes. Solid State Ionics 177, 31933198 (2006).CrossRefGoogle Scholar
47.Morales, L. and Caneiro, A.: Evolution of crystal structure with the oxygen content in the LaMn0.9Cr0.1O3+δ (3.00 ≤ 3+δ ≤ 3.12) compound. J. Solid State Chem. 170, 404410 (2003).CrossRefGoogle Scholar
48.Plint, S.M., Connor, P.A., Tao, S., and Irvine, J.T.S.: Electronic transport in the novel SOFC anode material La1-xSrxCr0.5Mn0.5Oδ. Solid State Ionics 177, 20052008 (2006).CrossRefGoogle Scholar
49.Komatsu, T., Chiba, R., Arai, H., and Sato, K.: Chemical compatibility and electrochemical property of intermediate-temperature SOFC cathodes under Cr poisoning condition. J. Power Sources 176, 132137 (2008).CrossRefGoogle Scholar
50.Risold, D., Hallstedt, B., and Gauckler, L.J.: The strontium-oxygen system. Calphad 20, 353361 (1996).CrossRefGoogle Scholar
51.Hillert, M., Jansson, B., Sundman, B., and Ågren, J.: A two-sublattice model of molten solutions with different tendency of ionization. Metall. Trans. A 16, 261266 (1985).CrossRefGoogle Scholar
52.Sundman, B.: Modification of the two-sublattice model for liquids. Calphad 15, 109119 (1991).CrossRefGoogle Scholar
53.Hastie, W. and Bonnell, D.W.: A predicitive phase-equilibrium model for multicomponent oxide mixtures. 2. Oxides of Na-K-Ca-Mg-Al-Si. High Temp. Sci. 19, 275306 (1985).Google Scholar
54.Bonnell, D.W. and Hastie, J.W.: A predictive thermodynamic model for complex high-temperature solution phases II. High Temp. Sci. 26, 313334 (1989).Google Scholar
55.Pelton, A.D. and Chartrand, P.: The modified quasi-chemical model: Part II. Multicomponent solutions. Metall. Mater. Trans. A 32, 13551360 (2001).CrossRefGoogle Scholar
56.Khattak, C.P. and Cox, D.E.: Structural studies of (La, Sr)CrO3 system. Mater. Res. Bull. 12, 463472 (1977).CrossRefGoogle Scholar
57.Tezuka, K., Hinatsu, Y., Nakamura, A., Inami, T., Shimojo, Y., and Morii, Y.: Magnetic and neutron diffraction study on perovskites La1-xSrxCrO3. J. Solid State Chem. 141, 404410 (1998).CrossRefGoogle Scholar
58.Tezuka, K., Hinatsu, Y., Oikawa, K., Shimojo, Y., and Morii, Y.: Studies on magnetic properties of La0.95Sr0.05CrO3 and La0.85Sr0.15CrO3 by means of powder neutron diffraction. J. Phys.: Condens. Matter 12, 41514160 (2000).Google Scholar
59.Nakamura, F., Matsunaga, Y., Oba, N., Arai, K., Matsubara, H., Takahashi, H., and Hashimoto, T.: Analysis of magnetic and structural phase transition behaviors of La1-xSrxCrO3 for preparation of phase diagram. Thermochim. Acta 435, 222229 (2005).CrossRefGoogle Scholar
60.Chakraborty, K.R., Yusuf, S.M., Krishna, P.S.R., Ramanadham, M., Tyagi, A.K., and Pomjakushin, V.: Structural study of La0.75Sr0.25CrO3 at high temperatures. J. Phys.: Condens. Matter 18, 86618672 (2006).Google ScholarPubMed
61.Matsunaga, Y., Nakamura, F., Takahashi, H., and Hashimoto, T.: Analysis of relationship between magnetic property and crystal structure of La1-xSrxCrO3 (x=0.13, 0.15). Solid State Commun. 145, 502506 (2008).CrossRefGoogle Scholar
62.Matsunaga, Y., Kawaji, H., Atake, T., Takahashi, H., and Hashimoto, T.: Magnetization and resistivity in chromium doped manganites. Thermochim. Acta 474, 5761 (2008).CrossRefGoogle Scholar
63.Cabeza, O., Long, M., Bari, M.A., Muirhead, C.M., Francesconi, M.G., and Greaves, C.: Magnetization resistivity chromium doped manganites. J. Phys.: Condens. Matter 11, 25692578 (1999).Google Scholar
64.El-Fadli, Z., Metni, M.R., Sapiña, F., Martinez, E., Folgado, J.V, Beltrán, D., Beltrán, A.: Structural effects of Co and Cr substitution in LaMnO3+δ. J. Mater. Chem. 10, 437443 (2000).CrossRefGoogle Scholar
65.Tseggai, M., Nordblad, P., Tellgren, R., Rundlöf, H., Andrè, G., and Bourèe, F.: Synthesis, nuclear structure, and magnetic properties of LaCr1-yMnyO3 (y=0, 0.1, 0.2, and 0.3). J. Alloys Compd. 457, 532540 (2008).CrossRefGoogle Scholar
66.Howard, S.A., Yau, J-K., and Anderson, H.U.: X-ray-powder diffraction structural phase-transition study of La(Cr1-xMnx)O3 (x=0 to 0.25) using the Rietveld method of analysis. J. Am. Ceram Soc. 75, 16851687 (1992).CrossRefGoogle Scholar
67.Hrovat, M., Bernik, S., Holc, J., Kuscer, D., and Kolar, D.: Preliminary data on solid solubility between LaCrO3 and LaFeO3 or LaMnO3. J. Mater. Sci. Lett. 16, 143146 (1997).CrossRefGoogle Scholar
68.Kallel, N., Dhahri, J., Zemni, S., Dhahri, E., Oumezzine, M., Ghedira, M., and Vincent, H.: Effect of Cr doping in La0.7Sr0.3Mn1-xCrxO3 with 0 ≤ x ≤ 0.5. Phys. Status Solidi A 184, 319325 (2001).3.0.CO;2-K>CrossRefGoogle Scholar
69.Inden, G.: Determination of chemical and magnetic interchange energies in bcc alloys. I. General treatment. Z. Metallkd. 66, 577582 (1975).Google Scholar
70.Hillert, M. and Jarl, M.: A model of alloying effects in ferromagnetic metals. Calphad 2, 227238 (1978).CrossRefGoogle Scholar
Supplementary material: File

Povoden-Karadeziz supplementary material

CAD file

Download Povoden-Karadeziz supplementary material(File)
File 43.3 KB