Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T14:41:09.705Z Has data issue: false hasContentIssue false

Thermal stability, corrosion resistance, and surface analysis of Cu–Hf–Ti–Ni–Nb bulk metallic glasses

Published online by Cambridge University Press:  31 January 2011

C.L. Qin*
Affiliation:
World Premier International Research Center (WPI) Advanced Institute for Materials Research, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
A. Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Bulk metallic glasses (BMGs) with high thermal stability and good corrosion resistance were synthesized in the (Cu0.6Hf0.25Ti0.15)100−xyNiyNbx system by copper mold casting. The addition of Ni element causes an extension of a supercooled liquid region (ΔTx = TxTg) from 60 K for Cu60Hf25Ti15 to 70 K for (Cu0.6Hf0.25Ti0.15)95Ni5. The simultaneous addition of Ni and Nb to the alloy is effective in improving synergistically the corrosion resistance in 1 N HCl, 3 mass% NaCl, and 1 N H2SO4 + 0.01 N NaCl solutions. The highly protective Hf-, Ti-, and Nb-enriched surface film is formed by the rapid initial preferential dissolution of Cu and Ni, which is responsible for the high corrosion resistance of the alloys in the solutions examined.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A., Zhang, W., Zhang, T., Kurosaka, K.: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 2645 (2001)CrossRefGoogle Scholar
2.Inoue, A., Zhang, W., Zhang, T., Kurosaka, K.: Formation and mechanical properties of Cu–Hf–Ti bulk glassy alloys. J. Mater. Res. 16, 2836 (2001)CrossRefGoogle Scholar
3.Cao, Q., Li, J., Zhou, Y., Jiang, J.Z.: Mechanically driven phase separation and corresponding microhardness change in Cu60Zr20Ti20 bulk metallic glass. Appl. Phys. Lett. 86, 081913 (2005)CrossRefGoogle Scholar
4.Inoue, A., Zhang, W.: Formation, thermal stability and mechanical properties of Cu–Zr–Al bulk glassy alloys. Mater. Trans. 43, 2921 (2002)CrossRefGoogle Scholar
5.Inoue, A., Zhang, W.: Formation and mechanical properties of Cu–Hf–Al bulk glassy alloys with a large supercooled liquid region of over 90 K. J. Mater. Res. 18, 1435 (2003)CrossRefGoogle Scholar
6.Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005)CrossRefGoogle ScholarPubMed
7.Kim, K.B., Das, J., Baier, F., Tang, M.B., Wang, W.H., Eckert, J.: Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. Appl. Phys. Lett. 88, 051911 (2006)CrossRefGoogle Scholar
8.Men, H., Kim, W.T., Kim, D.H.: Effect of titanium on glass-forming ability of Cu–Zr–Al alloys. Mater. Trans. 44, 1647 (2003)CrossRefGoogle Scholar
9.Xu, D.H., Duan, G., Johnson, W.L.: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 (2004)CrossRefGoogle ScholarPubMed
10.Dai, C.L., Guo, H., Shen, Y., Li, Y., Ma, E., Xu, J.: A new centimeter-diameter Cu-based bulk metallic glass. Scr. Mater. 54, 1403 (2006)CrossRefGoogle Scholar
11.Zhang, Q.S., Zhang, W., Inoue, A.: Preparation of Cu36Zr48 Ag8Al8 bulk metallic glass with a diameter of 25 mm by copper mold casting. Mater. Trans. 48, 629 (2007)CrossRefGoogle Scholar
12.Zhang, Q.S., Zhang, W., Inoue, A.: Fabrication of new Cu34Pd2Zr48Ag8Al8 bulk glassy alloy with a diameter of 30 mm. Mater. Trans. 48, 3031 (2007)CrossRefGoogle Scholar
13.Naka, M., Hashimoto, K., Masumoto, T.: Corrosion resistivity of amorphous iron alloys containing chromium. J. Jpn. Inst. Met. 38, 835 (1974)CrossRefGoogle Scholar
14.Naka, M., Hashimoto, K., Masumoto, T.: Corrosion behavior of amorphous and crystalline Cu50Ti50 and Cu50Zr50 alloys. J. Non-Cryst. Solids 30, 29 (1978)CrossRefGoogle Scholar
15.Qin, C.L., Asami, K., Zhang, T., Zhang, W., Inoue, A.: Corrosion behavior of Cu–Zr–Ti–Nb bulk glassy alloys. Mater. Trans. 44, 749 (2003)CrossRefGoogle Scholar
16.Qin, C.L., Asami, K., Zhang, T., Zhang, W., Inoue, A.: Effects of additional elements on the glass formation and corrosion behavior of bulk glassy Cu–Hf–Ti alloys. Mater. Trans. 44, 1042 (2003)CrossRefGoogle Scholar
17.Qin, C.L., Zhang, W., Asami, K., Ohtsu, N., Inoue, A.: Glass formation, corrosion behavior and mechanical properties of bulk glassy Cu–Hf–Ti–Nb alloys. Acta Mater. 53, 3903 (2005)CrossRefGoogle Scholar
18.Boer, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R., Niessen, A.K.: Cohesion in Metals(North-Holland, Amsterdam, The Netherlands 1988)224Google Scholar
19.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000)CrossRefGoogle Scholar
20.Asami, K., Hashimoto, K., Shimodaira, S.: XPS determination of compositions of alloy surfaces and surface oxides on mechanically polished iron-chromium alloys. Corros. Sci. 17, 713 (1977)CrossRefGoogle Scholar
21.Asami, K., Hashimoto, K.: An XPS study of the surfaces on Fe–Cr, Fe–Co, and Fe–Ni alloys after mechanical polishing. Corros. Sci. 24, 83 (1984)CrossRefGoogle Scholar
22.Lu, Z.P., Liu, C.T.: Glass formation criterion for various glass-forming systems. Phys. Rev. Lett. 91, 115505 (2003)CrossRefGoogle ScholarPubMed
23.Inoue, A.: High strength bulk amorphous alloys with low critical cooling rates. Mater. Trans., JIM 36, 866 (1995)CrossRefGoogle Scholar
24.Metals Databook edited by Japan Institute of Metals (Maruzen, Tokyo, Japan 1983)8Google Scholar
25.Qin, C.L., Zhang, W., Asami, K., Kimura, H., Inoue, A.: Influence of alloying elements Ni and Nb on thermal stability and corrosion resistance of Cu-based bulk metallic glasses. J. Mater. Res. 22, 1710 (2007)CrossRefGoogle Scholar
26.Hirota, E., Yoshioka, H., Habazaki, H., Kawashima, A., Asami, K., Hashimoto, K.: The corrosion behavior of sputter-deposited amorphous copper-niobium alloys in 12 N HCl. Corros. Sci. 32, 1213 (1991)CrossRefGoogle Scholar
27.Lee, H.J., Akiyama, E., Habazaki, H., Kawashima, A., Asami, K., Hashimoto, K.: The roles of tantalum and phosphorus in the corrosion behavior of Ni-Ta-P alloys in 12 M HCl. Corros. Sci. 39, 321 (1997)CrossRefGoogle Scholar
28.Katagiri, H., Meguro, S., Yamasaki, M., Habazaki, H., Sato, T., Kawashima, A., Asami, K., Hashimoto, K.: Synergistic effect of three corrosion-resistant elements on corrosion resistance in concentrated hydrochloric acid. Corros. Sci. 43, 171 (2001)CrossRefGoogle Scholar
29.Qin, C.L., Oak, J.J., Ohtsu, N., Asami, K., Inoue, A.: XPS study on the surface films of a newly designed Ni-free Ti-based bulk metallic glass. Acta Mater. 55, 2057 (2007)CrossRefGoogle Scholar