Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T11:42:30.394Z Has data issue: false hasContentIssue false

Thermal expansion and sintering studies of Nd2-xCexCuO4±δ (0 ≤ x ≤ 0.20)

Published online by Cambridge University Press:  01 May 2006

M. Soorie
Affiliation:
Department of Materials, Imperial College London, London SW7 2BP, United Kingdom
S.J. Skinner*
Affiliation:
Department of Materials, Imperial College London, London SW7 2BP, United Kingdom
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Sintering behavior and thermal expansion properties of the solid solution series Nd2-xCexCuO4±δ (0 ≤ x ≤ 0.20) have been investigated over the temperature range of 298 to 1100 K. Significant anisotropy in the lattice expansion coefficient in the a/b and c crystallographic axes was noted on increasing Ce content, which is consistent with the tetragonal unit cell. The lattice expansion in the c axis was found to decrease on increasing temperature for compositions up to x = 0.10, which is likely to be from variations in the oxygen stoichiometry. A variation in the sintering behavior was also noted on varying Ce content, with the onset of sintering temperature reaching a maximum at x = 0.10. A secondary sintering stage was noted for compositions with x > 0.10. Associated with the introduction of a secondary stage on sintering is an overall increase in the temperature at which the sintering is at a maximum.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nishiyama, S., Sakaguchi, D., Hattori, T.: Electrical conduction and thermoelectricity of La2NiO4+δ. Solid State Commun. 94, 279 (1995).CrossRefGoogle Scholar
2.Kharton, V.V., Viskup, A.P., Naumovich, E.N., Marques, F.M.B.: Oxygen ion transport in La2NiO4-based ceramics. J. Mater. Chem. 9, 2623 (1999).CrossRefGoogle Scholar
3.Bhavaraju, S., Carlo, J.F.D., Scarfe, D.P., Jacobson, A.J., Buttrey, D.J.: Electrochemical oxygen intercalation in La2NiO4+δ crystals. Solid State Ionics 86–88, 825 (1996).CrossRefGoogle Scholar
4.Demorgues, A., Dordor, P.: Transport and magnetic properties of La2NiO4+δ (0 < δ < 0.25). J. Solid State Chem. 124, 199 (1996).CrossRefGoogle Scholar
5.Jhans, H., Kim, D., Rasmussen, R.J., Honig, J.M.: Ac-conductivity measurements on La2NiO4+δ. Phys. Rev. B 54, 11224 (1996).CrossRefGoogle ScholarPubMed
6.Bassat, J.M., Odier, P., Villesuzanne, A., Marin, C., Pouchard, M.: Anisotropic ionic-transport properties in La2NiO4+δ single crystals. Solid State Ionics 167, 341 (2004).CrossRefGoogle Scholar
7.Minervini, L., Grimes, R.W., Kilner, J.A., Sickafus, K.E.: Oxygen migration in La2NiO4+delta. J. Mater. Chem. 10, 2349 (2000).CrossRefGoogle Scholar
8.Skinner, S.J., Kilner, J.A.: A comparison of the transport properties of La2-xSrxNi1-yFeyO4+d where 0 < x < 0.2 and 0 < y < 0.2. Ionics 5, 171 (1999).CrossRefGoogle Scholar
9.Jennings, A.J., Skinner, S.J., Helgason, O.: Structural properties of LaxSr2-xFeO4+/−delta at high temperature and under reducing conditions. J. Solid State Chem. 175, 207 (2003).CrossRefGoogle Scholar
10.Skinner, S.J., Kilner, J.A.: Oxygen diffusion and surface exchange in La2-xSrxNiO4+delta. Solid State Ionics 135, 709 (2000).CrossRefGoogle Scholar
11.Bassat, J.M., Boehm, E., Grenier, J.C., Mauvy, F., Dordor, P., Pouchard, M. YSZ supported cathodes or rare earth nickelates Ln2NiO4 for ITSOFC (650 °C), in Fifth ESOFC Proceedings, edited by Huijsmans, J. (European Fuel Cell Forum, Lucerne, Switzerland, 2002), p. 586.Google Scholar
12.Jennings, A.J., Skinner, S.J.: Thermal stability and conduction properties of the LaxSr2-xFeO4+d system. Solid State Ionics 152–153, 663 (2002).CrossRefGoogle Scholar
13.Amow, G., Whitfield, P., Davidson, I., Hammond, R.P., Munnings, C., Skinner, S.J. Structure and physical property trends in the hyperstoichiometric series La2Ni1-xCoxO4+δ, in Solid-State Chemistry of Inorganic Materials IV edited by Alario-Franco, M.A., Greenblatt, M., Rohrer, G., and Whittingham, M.S. (Mater. Res. Soc. Proc., 755, Warrendale, PA, 2003), p. 347.Google Scholar
14.Brooks, I.J.E., Ley, S., Skinner, S.J., Amow, G., Whitfield, P., Davidson, I. Investigation into the thermal expansion and sintering of Ln2MO4+δ (Ln = La, Nd, Pr and M = Ni, Co) in NATO Advanced Research Workshop on Mixed Ionic Electronic Conducting (MIEC) Perovskites for Advanced Energy Systems, Kiev, Ukraine edited by Orlovskaya, N. and Browning, N., (Kluwer Academic Publishers, Dordrecht, 2004), p. 281.CrossRefGoogle Scholar
15.Boehm, E., Bassat, J.M., Mauvy, F., Dordor, P., Grenier, J.C., Pouchard, M. Thermal stability and mixed conductivity in Ln2Ni1-xCuxO4+d (Ln = La, Pr, Nd) for SOFC cathodes, in 4th European Solid Oxide Fuel Cell Forum Proceedings, edited by McEvoy, A.J. (Lucerne, Switzerland, 2000), p. 717.Google Scholar
16.Mauvy, F., Bassat, J.M., Boehm, E., Dordor, P., Grenier, J.C., Loup, J.P.: Chemical oxygen diffusion coefficient measurement by conductivity relaxation - correlation between tracer diffusion coefficient and chemical diffusion coefficient. J. Eur. Ceram. Soc. 24, 1265 (2004).CrossRefGoogle Scholar
17.Mauvy, F., Bassat, J.M., Boehm, E., Dordor, P., Loup, J.P.: Measurement of chemical and tracer diffusion coefficients of oxygen in La2Cu0.5Ni0.5O4+delta. Solid State Ionics 158, 395 (2003).CrossRefGoogle Scholar
18.Mauvy, F., Bassat, J.M., Boehm, E., Manuad, J.P., Dordor, P., Grenier, J.C.: Oxygen electrode reaction on Nd2NiO4+delta cathode materials: Impedance spectroscopy study. Solid State Ionics 158, 17 (2003).CrossRefGoogle Scholar
19.Munnings, C.N., Skinner, S.J., Amow, G., Whitfield, P., Davidson, I. Oxide ion transport in novel K2NiF4-type oxides, in NATO Advanced Research Workshop on Mixed Ionic Electronic Conducting (MIEC) Perovskites for Advanced Energy Systems, Kiev, Ukraine edited by Orlovskaya, N. and Browning, N., (Kluwer Academic Publishers, Dordrecht, 2004), p. 289.CrossRefGoogle Scholar
20.Amow, G., Whitfield, P.S., Davidson, I., Munnings, C., and Skinner, S.J.: Development of novel cathode materials for solid oxide fuel cells based on the Ruddlesden-Popper system, Conference Proceedings (The Electrochemical Society, Pennington, NJ, 2003), in press.Google Scholar
21.Munnings, C.N., Skinner, S.J., Amow, G., Whitfield, P., Davidson, I. Evaluation of La2Ni1-xCoxO4+/−δ as a SOFC cathode material, in Eighth International Symposium on Solid Oxide Fuel Cells, Paris, April 2003, edited by Singhal, S.C. and Dokiya, M. (The Electrochemical Society, Pennington, NJ, 2003), p. 552.Google Scholar
22.Opila, E.J., Tuller, H.L., Wuensch, B.J., Maier, J.: Oxygen tracer diffusion in La2-xSrxCuO4-y single crystals. J. Am. Ceram. Soc. 76, 2363 (1993).CrossRefGoogle Scholar
23.Kharton, V.V., Viskup, A.P., Kovalevsky, A.V., Naumovich, E.N., Marques, F.M.B.: Ionic transport in oxygen-hyperstoichiometric phases with K2NiF4 type structure. Solid State Ionics 143, 337 (2001).CrossRefGoogle Scholar
24.Soorie, M., Skinner, S.J.: Ce substituted Nd2CuO4 as a possible fuel cell cathode material. Solid State Ionics (2005) (in press).Google Scholar
25.Spinolo, G., Scavini, M., Ghigna, P., Chiodelli, G., Flor, G.: Nature and amount of carriers in Ce doped Nd2CuO4 1. High-temperature characterization. Physica C 254, 359 (1995).CrossRefGoogle Scholar
26.Robin-Brisson, C., Tressaud, A., Chevalier, B., Salem, E.B., Hejtmanek, J., Etourneau, J., Cassart, M., Issi, J.P.: Occurrence of superconductivity in La2-xBaxCuO4 (0 < x < 0.04) and La2-xNdxCuO4 (0 < x < 0.3) systems after fluorination. J. Alloys Compd. 188, 69 (1992).CrossRefGoogle Scholar
27.Zhu, Y.T., Manthiram, A.: Role of bond length mismatch in L2-xCexCuO4 (L = lanthanide). Phys. Rev. B 49, 6293 (1994).CrossRefGoogle ScholarPubMed
28.Radaelli, P.G., Jorgensen, J.D., Schultz, A.J., Peng, J.L., Greene, R.L.: Evidence of apical oxygen in Nd2CuOy determined by single crystal neutron diffraction. Phys. Rev. B 49, 15322 (1994).CrossRefGoogle ScholarPubMed
29.Mangelschots, I., Andersen, N.H., Lebech, B., Wisniewski, A., Jacobsen, C.S.: Crystal structure, magnetic susceptibility and thermopower of superconducting and non-superconducting Nd1.85Ce0.15CuO4+y. Physica C 203, 360 (1992).Google Scholar