Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T00:07:27.624Z Has data issue: false hasContentIssue false

Thermal diffusivity of (Ca1–xSrx)3Co4O9 thin films using transient grating configuration

Published online by Cambridge University Press:  03 March 2011

Yoshiaki Takata*
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba-shi, Ibaraki 305-0044, Japan
Yutaka Adachi
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba-shi, Ibaraki 305-0044, Japan
Hajime Haneda
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba-shi, Ibaraki 305-0044, Japan
Yoshiki Wada
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba-shi, Ibaraki 305-0044, Japan
Takefumi Mitsuhashi
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba-shi, Ibaraki 305-0044, Japan
Kenji Itaka
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Hideomi Koinuma
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The past impossibility to create optical diffraction fringe image out of transparent TiO2(100) substrate was overcome by pumping light pulse of 266-nm wavelength. Thermal diffusivities (D) of TiO2(100) substrate and (Ca1–xSrx)3Co4O9 (0 ≤ x ≤ 0.125) thin films can successfully be determined with a newly proposed transient grating configuration method arising from a generic nanoscale measurement technique. The D values obtained at room temperature were 0.04 cm2/s for the former and 0.07–0.12 cm2/s for the latter, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Eichler, H., Salje, G., and Stahl, H., J. Appl. Phys. 44, 5383 (1973).CrossRefGoogle Scholar
2.Harata, A., Nishimura, H., and Sawada, T., Appl. Phys. Lett. 57, 132 (1990).CrossRefGoogle Scholar
3.Marshall, C.D., Tokmakoff, A., Fishman, I.M., Eom, C.B., Phillips, J.M., and Fayer, M.D., J. Appl. Phys. 73, 850 (1993).CrossRefGoogle Scholar
4.Rogers, J.A. and Nelson, K.A., J. Appl. Phys. 75, 1534 (1994).CrossRefGoogle Scholar
5.Shen, Q., Harata, A., and Sawada, T., J. Appl. Phys. 77, 1488 (1995).CrossRefGoogle Scholar
6.Sawada, T. and Harata, A., Appl. Phys. A 61, 263 (1995).CrossRefGoogle Scholar
7.Harata, A., Adachi, N., and Sawada, T., Phys. Rev. B 58, 7319 (1998).CrossRefGoogle Scholar
8.Takata, Y., Haneda, H., Mitsuhashi, T., and Wada, Y., Appl. Surf. Sci. 189, 227 (2002).CrossRefGoogle Scholar
9.Takata, Y., Adachi, Y., Haneda, H., Wada, Y., Mitsuhashi, T., Ohtani, M., Fukumura, T., Kawasaki, M., and Koinuma, H., in Combinatorial and Artificial Intelligence Methods in Materials Science, edited by Takeuchi, I., Newsam, J.M., Wille, L.T., Koinuma, H., and Amis, E.J. (Mater. Res. Soc. Symp. Proc. 700, Warrendale, PA, 2001), pp. 167172.Google Scholar
10.Takata, Y., Haneda, H., Adachi, Y., Wada, Y., Mitsuhashi, T., Ohtani, M., Fukumura, T., Kawasaki, M., and Koinuma, H., in Materials for Energy Storage, Generation and Transport, edited by Schwarz, R.B., Ceder, G., and Ringel, S.A. (Mater. Res. Soc. Symp. Proc. 730, Warrendale, PA, 2002), pp. 221-226.Google Scholar
11.Minami, H., Itaka, K., Kawaji, H., Wang, Q.J., Koinuma, H., and Lippmaa, M., Appl. Surf. Sci. 197–198, 442 (2002).CrossRefGoogle Scholar
12.Fukumura, T., Okimoto, Y., Ohtani, M., Kageyama, T., Koida, T., Kawasaki, M., Hasegawa, T., Tokura, Y., and Koinuma, H., Appl. Phys. Lett. 77, 3426 (2000).CrossRefGoogle Scholar
13. Japan Society of Thermophysical Properties, in Thermophysical Properties Handbook (Yokendo Publishers, Tokyo, Japan, 1990), p. 261.Google Scholar
14. JIS R1611, Japan Industrial Standard for Measuring Thermal Conductivity (1997).Google Scholar