Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T14:44:16.380Z Has data issue: false hasContentIssue false

Thermal diffusivity maps: Case studies in ceramics

Published online by Cambridge University Press:  31 January 2011

Lanhua Wei
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Grady S. White
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

A new methodology for mapping thermal diffusivity using a photothermal deflection method is introduced. Two case studies are made: fiber-reinforced composite structures and contact damage zones in alumina. In the former, characterization of thermal microstructural features is demonstrated; in the latter, microcrack density is quantified. Experimental data are analyzed and compared with literature results. Advantages and limitations of the technique are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kittel, C., Introduction to Solid State Physics, 6th ed. (John Wiley & Sons, Inc., New York, 1988).Google Scholar
2.Guenther, A. H., and Mciver, J. K., Thin Solid Films 163, 203 (1988).CrossRefGoogle Scholar
3.Mastrangelo, C. H., and Muller, R. S., Solid-State Sensor and Actuator Workshop, IEEE Catalog No. 88TH0215-4, Hilton Head, SC (June 6–9, 1998), p. 43.Google Scholar
4.Fink, M. I., and Goodson, K. E., Proceedings of the U.S.-Australia Joint Seminar on Enhanced Thermal Conductance in Microelectronics, edited by Williams, A., Melbourne, Australia (1992), p. 79.Google Scholar
5.Takeuchi, Y. R., and Kokini, K., Trans. ASME 116, 266 (1994).Google Scholar
6.Smith, W. L., Rosencwaig, A., and Willenborg, D. L., Appl. Phys. Lett. 47, 584 (1985).Google Scholar
7.Smith, D. T. and Lanhua Wei, , J. Am. Ceram. Soc. 78 (5), 1301 (1995).CrossRefGoogle Scholar
8.Thomas, R. L., Favro, L. D., Kuo, P. K., and Bruno, R., Photonics Spectra, p. 149 (Jan. 1993).Google Scholar
9.Geiger, A. L., and Jackson, M., in Electronic packaging technology: materials and processes, edited by W. T., Shieh (ASM INTERNATIONAL, Metals Park, OH, 1989), p. 93.Google Scholar
10.Vantomme, A., Nicolet, M. A., and Theodore, N. D., J. Appl. Phys. 75, 3882 (1994).CrossRefGoogle Scholar
11.Koizumi, M., and Niino, M., MRS Bulletin XX (1), 19 (1995); W. A. Kaysser and B. Ilschner, MRS Bulletin XX (1), 22 (1995).Google Scholar
12.Taylor, R., The Eighth European Thermophysical Properties Conference Proceedings (1982), p. 181.Google Scholar
13.Lepoutre, F., Bouchoule, S., Backstrom, G., and Balageas, D., Proceedings of the 7th International Topical Meeting, Doorwerth, The Netherlands, August 26–30 (1991), p. 664.Google Scholar
14.Geiger, G., Ceram. Bull. 73 (11), 47 (1994).Google Scholar
15.Boccara, A. C., Fournier, D., and Badoz, J., Appl. Phys. Lett. 36, 130 (1980).Google Scholar
16.Grice, K. R., Inglehart, L. J., Favro, L. D., Kuo, P. K., and Thomas, R. L., J. Appl. Phys. 54, 6245 (1983).CrossRefGoogle Scholar
17.Favro, L. D., Kuo, P. K., and Thomas, R. L., in Photoacoustic and Thermal Wave Phonomena in Semiconductors, edited by A., Mandelis (North-Holland, Amsterdam, 1987), p. 68.Google Scholar
18.Anthony, T. R., Banholzer, W. F., Fleischer, J. F., LanhuaWei, P. K.Kuo, R. L. Thomas, and Pryor, R. W., Phys. Rev. B 42, 1104 (1990).CrossRefGoogle Scholar
19.Inglehart, L. J., Grice, K. R., Favro, L. D., Kuo, P. K., and Thomas, R. L., Appl. Phys. Lett. 43, 446 (1983).CrossRefGoogle Scholar
20.Kuo, P. K., Slender, E. D., Grice, K. R., Favro, L. D., and Thomas, R. L., Can. J. Phys. 64, 1168 (1986c).CrossRefGoogle Scholar
21. Lanhua Wei, Thermal Property Characterization of Single Crystal Diamond with Varying Isotopic Compositions, Ph.D. Dissertation, Wayne State University, Detroit, MI (1993).Google Scholar
22. Lanhua Wei, Vaudin, M., Hwang, C., White, G. S., Xu, J., and Steckl, A. J., J. Mater. Res. 10, 1889 (1995).Google Scholar
23.Xu, H. H. K., Ostertag, C. P., and Braun, L. M., J. Am. Ceram. Soc. 77 (7), 1889 (1994).Google Scholar
24.Hasselman, D. P. H., and Johnson, L. F., J. Composite Mater. 21, 508 (1987).CrossRefGoogle Scholar
25.Bhatt, H., Donaldson, K. Y., Hasselman, D. P. H., and Bhatt, R. T., J. Am. Ceram. Soc. 73 (2), 312 (1990).Google Scholar
26.Bhatt, H., Donaldson, K. Y., Hasselman, D. P. H., and Bhatt, R. T., J. Am. Ceram. Soc. 75 (2), 334 (1992).CrossRefGoogle Scholar
27.Bhatt, H., Donaldson, K. Y., Hasselman, D. P. H., and Bhatt, R. T., J. Mater. Sci. 27, 6653 (1992).CrossRefGoogle Scholar
28.Hasselman, D. P. H., Donaldson, K. Y., and Thomas, J. R., Jr., J. Composite Mater. 27 (6), 637 (1993).Google Scholar
29.Guiberteau, F., Padture, N. P., and Lawn, B. R., J. Am. Ceram. Soc. 77, 1825 (1994).CrossRefGoogle Scholar
30.Lawn, B. R., Padture, N. P., Guiberteau, F., and Cai, H., Acta Metall. 42, 1683 (1994).Google Scholar
31.Hasselman, D. P. H., J. Composite Mater. 12, 403 (1978).Google Scholar
32. Lanjua Wei and Lawn, B. R., J. Mater. Res. 11, 939 (1996).Google Scholar
33.Yurgartis, S. W., MacGibbon, B. S., and Mulvaney, P., J. Mater. Sci. 27, 6679 (1992).CrossRefGoogle Scholar
34.Ziegler, G., and Hasselman, D. P. H., J. Mater. Sci. 16, 495 (1981).Google Scholar
35.Watari, K., Seki, Y., and Ishizaki, K., J. Ceram. Soc. Jan. Int. Ed. 97, 53 (1989).Google Scholar
36.Silicon Carbide Ceramics-1, edited by Sōmiya, S., and Inomata, Y. (Elsevier Applied Science, London and New York, 1990), pp. 27, 31.Google Scholar
37.Ning, X. J., and Pirouz, P., J. Mater. Res. 6, 2234 (1991).CrossRefGoogle Scholar
38.Xu, H. H. K., Lanhua Wei, N. P. Padture, Lawn, B. R., and Yeckley, R. L., J. Mater. Sci. 30, 869 (1995).CrossRefGoogle Scholar