Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T05:36:57.270Z Has data issue: false hasContentIssue false

Thermal coarsening of nanoporous gold: Melting or recrystallization

Published online by Cambridge University Press:  31 January 2011

Masataka Hakamada*
Affiliation:
Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Shimoshidami, Moriyama, Nagoya 463-8560, Japan
Mamoru Mabuchi
Affiliation:
Department of Energy Science and Technology, Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The thermal coarsening of nanoporous Au was examined and compared with the thermal instability of Au nanoparticles. The nanoporous Au was coarsened at temperatures far below the melting temperature of Au nanoparticles, which possess sizes similar to the nanoligaments. Differential scanning calorimetry characterization of nanoporous Au exhibited an exothermal peak around 470 K. These results suggest that solid-state process like recrystallization, rather than melting, is responsible for the thermal coarsening of nanoporous Au.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., Sieradzki, K.: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001)CrossRefGoogle ScholarPubMed
2.Forty, A.J., Durkin, P.: A micro-morphological study of the dissolution of silver-gold alloys in nitric-acid. Philos. Mag. A 42, 295 (1980)CrossRefGoogle Scholar
3.Qian, L.H., Chen, M.W.: Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 91, 083105 (2007)CrossRefGoogle Scholar
4.Hakamada, M., Mabuchi, M.: Mechanical strength of nanoporous gold fabricated by dealloying. Scr. Mater. 56, 1003 (2007)CrossRefGoogle Scholar
5.Kramer, D., Viswanath, R.N., Weissmüller, J.: Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Lett. 4, 793 (2004)CrossRefGoogle Scholar
6.Liu, Z., Searson, P.C.: Single nanoporous gold nanowire sensors. J. Phys. Chem. B 110, 4318 (2006)CrossRefGoogle ScholarPubMed
7.Xu, C., Su, J., Xu, X., Liu, P., Zhao, H., Tian, F., Ding, Y.: Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 129, 42 (2007)CrossRefGoogle ScholarPubMed
8.Li, R., Sieradzki, K.: Ductile-brittle transition in random porous Au. Phys. Rev. Lett. 68, 1168 (1992)CrossRefGoogle ScholarPubMed
9.Hodge, A.M., Biener, J., Hayes, J.R., Bythrow, P.M., Volkert, C.A., Hamza, A.V.: Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55, 1343 (2007)CrossRefGoogle Scholar
10.Seker, E., Gaskins, J.T., Bart-Smith, H., Zhu, J., Reed, M.L., Zangari, G., Kelly, R., Begley, M.R.: The effects of post-fabrication annealing on the mechanical properties of freestanding nanoporous gold structures. Acta Mater. 55, 4593 (2007)CrossRefGoogle Scholar
11.Wronski, C.R.M.: The size dependence of the melting point of small particles of tin. Br. J. Appl. Phys. 18, 1731 (1967)CrossRefGoogle Scholar
12.Buffat, Ph., Borel, J-P.: Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287 (1976)CrossRefGoogle Scholar
13.Couchman, P.R., Jesser, W.A.: Thermodynamic theory of size dependence of melting temperature in metals. Nature 269, 481 (1977)CrossRefGoogle Scholar
14.Lai, S.L., Guo, J.Y., Petrova, V., Ramanath, G., Allen, L.H.: Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Phys. Rev. Lett. 77, 99 (1996)CrossRefGoogle ScholarPubMed
15.Toimil Molares, M.E., Balogh, A.G., Cornelius, T.W., Neumann, R., Trautmann, C.: Fragmentation of nanowires driven by Rayleigh instability. Appl. Phys. Lett. 85, 5337 (2004)CrossRefGoogle Scholar
16.Shin, H.S., Yu, J., Song, J.Y.: Size-dependent thermal instability and melting behavior of Sn nanowires. Appl. Phys. Lett. 91, 173106 (2007)CrossRefGoogle Scholar
17.Li, H., Biser, J.M., Perkins, J.T., Dutta, S., Vinci, R.P., Chan, H.M.: Thermal stability of Cu nanowires on a sapphire substrate. J. Appl. Phys. 103, 024315 (2008)CrossRefGoogle Scholar
18.Nanda, K.K., Sahu, S.N., Behera, S.N.: Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys. Rev. A 66, 013208 (2002)CrossRefGoogle Scholar
19.Kim, K.S., Song, J.Y., Chung, E.K., Park, J.K., Hong, S.H.: Relationship between mechanical properties and microstructure of ultra-fine gold bonding wires. Mech. Mater. 38, 119 (2006)CrossRefGoogle Scholar
20.Rost, M.J., Quist, D.A., Frenken, J.W.M.: Grain, growth, and grooving. Phys. Rev. Lett. 91, 026101 (2003)CrossRefGoogle ScholarPubMed
21.Okuda, S., Tang, F.: Thermal stability of nanocrystalline gold prepared by gas deposition method. Nanostruct. Mater. 6, 585 (1995)CrossRefGoogle Scholar
22.Hakamada, M., Mabuchi, M.: Microstructural evolution in thermal and acid treatments in nanoporous gold. Mater. Lett. 62, 483 (2008)CrossRefGoogle Scholar
23.Klement, U., Erb, U., El-Sherik, A.M., Aust, K.T.: Thermal stability of nanocrystalline Ni. Mater. Sci. Eng., A 203, 177 (1995)CrossRefGoogle Scholar