Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T08:27:32.478Z Has data issue: false hasContentIssue false

Theoretical phase diagrams of nanowires

Published online by Cambridge University Press:  03 March 2011

G. Abudukelimu
Affiliation:
Ili Pedagogical Institute, Ili, Xin Jiang, People’s Republic of China
G. Guisbiers
Affiliation:
Condensed Matter Physics, University of Mons-Hainaut, B-7000 Mons, Belgium
M. Wautelet*
Affiliation:
Condensed Matter Physics, University of Mons-Hainaut, B-7000 Mons, Belgium
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Systems with typical dimensions in the range of 1–100 nm are in an intermediate state between solid and molecular. Such systems are characterized by the fact that the ratio of the number of surface to volume atoms is not small. This is known to lead to size and shape effects on their cohesive properties. In this work, the phase diagram of nanowires was studied in the framework of classical thermodynamics. The roles of the size, shape, and surface tensions were emphasized. The melting temperatures of nanowires of 21 elements were evaluated theoretically. In the case of binary systems, it was shown that the experimental or theoretical knowledge of the size-dependent phase diagrams of a given binary system allows the evaluation of the one of nanowires. The procedure is described in this paper.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Buffat, Ph., Borel, J-P.: Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287 (1976).CrossRefGoogle Scholar
2.Das, V. Damodara, Karunakaran, D.: Thickness dependence of the phase transition temperature in Ag2Se thin films. J. Appl. Phys. 68, 2105 (1990).CrossRefGoogle Scholar
3.Delerue, C., Lannoo, M.: Nanostructures. Theory and Modelling (Springer, Berlin, Germany, 2004), p. 51.CrossRefGoogle Scholar
4.Wang, D., Dai, H.: Low-temperature synthesis of single-crystal germanium nanowires by chemical vapor deposition. Angew. Chem., Int. Ed. Engl. 41, 4783 (2002).CrossRefGoogle ScholarPubMed
5.Wacaser, B.A., Deppert, K., Karlsson, L.S., Samuelson, L., Seifert, W.: Growth and characterization of defect free GaAs nanowires. J. Cryst. Growth 287, 504 (2006).CrossRefGoogle Scholar
6.Bunge, S.D., Krueger, K.M., Boyle, T.J., Rodriguez, M.A., Headley, T.J., Colvin, V.L.: Growth and morphology of cadmium chalcogenides: The synthesis of nanorods, tetrapods, and spheres from CdO and Cd(O2CCH3)2. J. Mater. Chem. 13, 1705 (2003).Google Scholar
7.Yan, H.L., Shi, G.Q.: Incorporation of gold nanocrystals into poly(3-alkylthiophene) nanowires and fabrication of gold nanowires. Nanotechnology 17, 13 (2006).CrossRefGoogle Scholar
8.Atashbar, M.Z., Banerji, D., Singamaneni, S.: Deposition of parallel arrays of palladium nanowires and electrical characterization using microelectrode contacts. Nanotechnology 15, 374 (2004).CrossRefGoogle Scholar
9.Pan, D., Shuyuan, Z., Chen, Y., Hou, J.G.: Hydrothermal preparation of long nanowires of vanadium oxide. J. Mater. Res. 17, 1981 (2002).CrossRefGoogle Scholar
10.Zhang, Z., Hellström, P-E., Ostling, M., Zhang, S-L.: Electrically robust ultralong nanowires of NiSi, Ni2Si, and Ni31Si12. Appl. Phys. Lett. 88, 043104 (2006).CrossRefGoogle Scholar
11.Miao, L., Bhethanabotla, V.R., Joseph, B.: Melting of Pd clusters and nanowires: A comparison study using molecular dynamics simulation. Phys. Rev. B 72, 134109 (2005).CrossRefGoogle Scholar
12.Allen, G.L., Bayles, R.A., Gile, W.W., Jesser, W.A.: Small particle melting of pure metals. Thin Solid Films 144, 297 (1986).CrossRefGoogle Scholar
13.Sheng, H.W., Xu, J., Yu, L.G., Sun, X.K., Hu, Z.Q., Lu, K.: Melting process of nanometer-sized In particles embedded in an Al matrix synthesized by ball milling. J. Mater. Res. 11, 2841 (1996).Google Scholar
14.Pawlow, P.: On the dependence of the melting point with the surface energy of solid materials. Z. Phys. Chem. 65, 1 (1909).CrossRefGoogle Scholar
15.Couchman, P.R., Jesser, W.A.: Thermodynamic theory of size dependence of melting temperature in metals. Nature 269, 481 (1977).CrossRefGoogle Scholar
16.Nakanishi, A., Matsubara, T.: A theory of melting of metallic fine particles. J. Phys. Soc. Jpn. 39, 1415 (1975).CrossRefGoogle Scholar
17.Wautelet, M.: Estimation of the variation of the melting temperature with the size of small particles, on the basis of a surface-phonon instability model. J. Phys. D: Appl. Phys. 24, 343 (1991).CrossRefGoogle Scholar
18.Vanfleet, R.R., Mochel, J.M.: Thermodynamics of melting and freezing in small particles. Surf. Sci. 341, 40 (1995).CrossRefGoogle Scholar
19.Nanda, K.K., Sahu, S.N., Behera, S.N.: Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys. Rev. A 66, 013208 (2002).CrossRefGoogle Scholar
20.Sun, C.Q., Tay, B.K., Zeng, X.T., Li, S., Chen, T.P., Zhou, J.I., Bai, H.L., Jiang, E.Y.: Bond-order-bond-length strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid. J. Phys.: Condens. Matter 14, 7781 (2002).Google Scholar
21.Celestini, F., Bosch, A. Ten: Effect of shape on phase transition temperature of clusters. Phys. Lett. A 207, 307 (1995).Google Scholar
22.Wautelet, M.: On the shape dependence of the melting temperature of small particles. Phys. Lett. A 246, 341 (1998).CrossRefGoogle Scholar
23.Wautelet, M.: Effects of size, shape and environment on the phase diagrams of small structures. Nanotechnology 3, 42 (1992).CrossRefGoogle Scholar
24.Zhao, M., Zhou, X.H., Jiang, Q.: Comparison of different models for melting point change of metallic nanoparticles. J. Mater. Res. 16, 3304 (2001).CrossRefGoogle Scholar
25.Wautelet, M., Dauchot, J.P., Hecq, M.: On the phase diagram of non-spherical nanoparticles. J. Phys.: Condens. Matter 15, 3651 (2003).Google Scholar
26.Xie, D., Wang, M.P., Qi, W.H.: A simplified model to calculate the surface-to-volume atomic ratio dependent cohesive energy of nanocrystals. J. Phys.: Condens. Matter 16, L401 (2004).Google Scholar
27.Wautelet, M.: On the melting of polyhedral elemental nanosolids. Eur. Phys. J. Appl. Phys. 29, 51 (2005).CrossRefGoogle Scholar
28.Guisbiers, G., Wautelet, M.: Size, shape and stress effects on the melting temperature of nano-polyhedral grains on a substrate. Nanotechnology 17, 2008 (2006).CrossRefGoogle Scholar
29.Wautelet, M., Dauchot, J.P., Hecq, M.: Phase diagrams of small particles of binary systems: A theoretical approach. Nanotechnology 11, 6 (2000).CrossRefGoogle Scholar
30.Vallee, R., Wautelet, M., Dauchot, J.P., Hecq, M.: Size and segregation effects on the phase diagrams of nanoparticles of binary systems. Nanotechnology 12, 68 (2001).Google Scholar
31.Liang, L.H., Liu, D., Jiang, Q.: Size-dependent continuous binary solution phase diagram. Nanotechnology 14, 438 (2003).Google Scholar
32.Shirinyan, A.S., Gusak, A.M.: Phase diagrams of decomposing nanoalloys. Philos. Mag. 84, 579 (2004).CrossRefGoogle Scholar
33.Shirinyan, A.S., Wautelet, M.: Phase separation in nanoparticles. Nanotechnology 15, 1720 (2004).CrossRefGoogle Scholar
34.Shirinyan, A.S., Gusak, A.M., Wautelet, M.: Phase diagram versus diagram of solubility: What is the difference for nanosystems? Acta Mater. 53, 5025 (2005).CrossRefGoogle Scholar
35.Jesser, W.A., Shneck, R.Z., Gile, W.W.: Solid-liquid equilibria in nanoparticles of Pb–Bi alloys. Phys. Rev. B 69, 144121 (2004).CrossRefGoogle Scholar
36.Shirinyan, A., Wautelet, M., Belogorodsky, Y.: Solubility diagram of the Cu–Ni nanosystem. J. Phys.: Condens. Matter 18, 2537 (2006).Google Scholar
37.Desjonquières, M.C., Spanjaard, D.: Concepts in Surface Science (Springer-Verlag, Berlin, Germany, 1993), p. 131.Google Scholar
38.Chopra, K.L.: Thin Film Phenomena (McGraw Hill, New York, 1969), p. 161.Google Scholar
39.Vitos, L., Ruban, A.V., Skriver, H.L., Kollar, J.: The surface energy of metals. Surf. Sci. 411, 186 (1998).CrossRefGoogle Scholar
40.Jiang, Q., Lu, H.M., Zhao, M.: Modelling of surface energies of elemental crystals. J. Phys.: Condens. Matter 16, 521 (2004).Google Scholar
41.Sun, C.Q., Shi, Y., Li, C.M., Li, S., Au Yeung, T.C.Size-induced undercooling and overheating in phase transitions in bare and embedded clusters. Phys. Rev. B, 73, 075408-1-9 (2006).CrossRefGoogle Scholar
42.Chen, H., Gao, Y., Yu, H., Zhang, H., Liu, L., Shi, Y., Tian, H., Xie, S., Li, J.: Structural properties of silver nanorods with fivefold symmetry. Micron. 35, 469 (2004).CrossRefGoogle ScholarPubMed
43.Wautelet, M.: On the transitions between the crystalline, amorphous and liquid phases of silicon and germanium, when their size decreases. Phys. Status Solidi B 159 K43(1990).CrossRefGoogle Scholar
44.Rosenberger, F.: Fundamentals of Crystal Growth I, Macroscopic and Transport Concepts (Springer, New York, 1979).CrossRefGoogle Scholar
45.Steininger, J.: Thermodynamics and calculation of the liquidus– solidus gap in homogeneous, monotonic alloy systems. J. Appl. Phys. 41, 2713 (1970).CrossRefGoogle Scholar