Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T03:51:15.376Z Has data issue: false hasContentIssue false

A textured barium niobate with enhanced temperature stability of dielectric constant for high-frequency applications

Published online by Cambridge University Press:  03 March 2011

Dong-Wan Kim*
Affiliation:
Materials Science and Technology Division, Korea Institute of Science and Technology, Seoul 136-791, Korea
Byung-Kook Kim
Affiliation:
Materials Science and Technology Division, Korea Institute of Science and Technology, Seoul 136-791, Korea
Hae-June Je
Affiliation:
Materials Science and Technology Division, Korea Institute of Science and Technology, Seoul 136-791, Korea
Jae-Gwan Park
Affiliation:
Materials Science and Technology Division, Korea Institute of Science and Technology, Seoul 136-791, Korea
Jeong-Ryeol Kim
Affiliation:
School of Materials Science and Engineering, College of Engineering, Seoul National University, Seoul 151-742, Korea
Kug Sun Hong
Affiliation:
School of Materials Science and Engineering, College of Engineering, Seoul National University, Seoul 151-742, Korea
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ba5Nb4O15 has shown excellent microwave dielectric properties and is under consideration as a low-temperature cofired ceramic material for advanced radio frequency (RF) applications. By combining tape casting and liquid phase upon sintering, sintered Ba5Nb4O15 thick films stacked to form laminates were produced with aligned elongated grains. This texture engineering, correlated with crystallographic orientation, provides remarkably high temperature stability of dielectric constant up to microwave frequency. Crystallographic texture arises in Ba5Nb4O15 induced by the primary consolidation process, hot pressing, and pulsed laser deposition. The dielectric anisotropy could be efficiently obtained in the textured samples, thereby enabling significant feasibility of microwave circuit designs.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lin, C.C., Chang, Y.J., and Chuang, H.R.: Design of a 900/1800 MHz dual-band LTCC chip antenna for mobile communications applications. Microwave J. 47, 78 (2004).Google Scholar
2Vanderah, T.A.: Talking ceramics. Science 298, 1182 (2002).CrossRefGoogle ScholarPubMed
3Eberstein, M. and Schiller, W.A.: Development of high-permittivity glasses for microwave LTCC tapes. Glass Sci. Technol. 76, 8 (2003).Google Scholar
4Eberstein, M., Möller, J., Wiegmann, J., and Schiller, W.A.: Modification and simulation of dielectric properties of glass/crystal phase-composites for LTCC application. CFI Ceram. Forum Int. 80, E39 (2003).Google Scholar
5Kim, D.W., Kim, J.R., Yoon, S.H., Hong, K.S., and Kim, C.K.: Microwave dielectric properties of low-fired Ba5Nb4O15. J. Am. Ceram. Soc. 85, 2759 (2002).CrossRefGoogle Scholar
6Vanderah, T.A., Collins, T.R., Wong-Ng, W., Roth, R.S., and Farber, L.: Phase equilibria and crystal chemistry in the BaO-Al2O3-Nb2O5 and BaO-Nb2O5 systems. J. Alloys Compd. 346, 116 (2002).CrossRefGoogle Scholar
7Kim, D.W., Youn, H.J., Hong, K.S., and Kim, C.K.: Microwave dielectric properties of (1-x)Ba5Nb4O15-xBaNb2O6 mixtures. Jpn. J. Appl. Phys. 41, 3812 (2002).CrossRefGoogle Scholar
8Kamba, S., Petzelt, J., Buixaderas, E., Haubrich, D., Vaněk, P., Kužel, P., Jawahar, I.N., Sebastian, M.T., and Mohanan, P.: High frequency dielectric properties of A5B4O15 microwave ceramics. J. Appl. Phys. 89, 3900 (2001).CrossRefGoogle Scholar
9Ratheesh, R., Sebastian, M.T., Mohanan, P., Tobar, M.E., Hartnett, J., Woode, R., and Blair, D.G.: Microwave characterisation of BaCe2Ti5O15 and Ba5Nb4O15 ceramic dielectric resonators using whispering gallery mode method. Mater. Lett. 45, 279 (2000).CrossRefGoogle Scholar
10Jawahar, I.N., Mohanan, P., and Sebastian, M.T.: A5B4O15 (A=Ba, Sr, Mg, Ca, Zn; B=Nb, Ta) microwave dielectric ceramics. Mater. Lett. 57, 4043 (2003).CrossRefGoogle Scholar
11Kim, D.W., Hong, K.S., Yoon, C.S., and Kim, C.K.: Low-temperature sintering and microwave dielectric properties of Ba5Nb4O15-BaNb2O6 mixtures for LTCC applications. J. Eur. Ceram. Soc. 23, 2597 (2003).CrossRefGoogle Scholar
12Kim, D.W., Hong, H.B., Hong, K.S., Kim, C.K., and Kim, D.J.: The reversible phase transition and dielectric properties of BaNb2O6 polymorphs. Jpn. J. Appl. Phys. 41, 6045 (2002).CrossRefGoogle Scholar
13Hughes, H., Iddles, D.M., and Reaney, I.M.: Niobate-based microwave dielectrics suitable for third generation mobile phone base stations. Appl. Phys. Lett. 79, 2952 (2001).CrossRefGoogle Scholar
14Cava, R.J.: Dielectric materials for applications in microwave communications. J. Mater. Chem. 11, 54 (2001).CrossRefGoogle Scholar
15Belous, A.G., Ovchar, O.V., Valant, M., and Suvorov, D.: Anomalies in the temperature dependence of the microwave dielectric properties of Ba6−xSm8+2x/3Ti18O54. Appl. Phys. Lett. 77, 1707 (2000).CrossRefGoogle Scholar
16Kim, D.W., Ko, K.H., and Hong, K.S.: Influence of copper(II) oxide additions to zinc niobate microwave ceramics on sintering temperature and dielectric properties. J. Am. Ceram. Soc. 84, 1286 (2001).CrossRefGoogle Scholar
17Watanabe, H., Kimura, T., and Yamaguchi, T.: Particle orientation during tape casting in the fabrication of grain-oriented bismuth titanate. J. Am. Ceram. Soc. 72, 289 (1989).CrossRefGoogle Scholar
18Lee, J.H., Hyun, S., and Char, K.: Quantitative analysis of scanning microwave microscopy on dielectric thin film by finite element calculation. Rev. Sci. Instrum. 72, 1425 (2001).CrossRefGoogle Scholar
19Pagola, S., Polla, G., Leyva, G., Casais, M.T., Alonso, J.A., Rasines, I., and Carbonio, R.E.: Crystal structure refinement of Ba5Nb4O15 and Ba5Nb4O15-x by Rietveld analysis of neutron and x-ray diffraction data. Mater. Sci. Forum 228-231, 819 (1996).CrossRefGoogle Scholar
20Thirumal, M. and Davies, P.K.: Ba8ZnTa6O24: A new high Q dielectric perovskite. J. Am. Ceram. Soc. 88, 2126 (2005).CrossRefGoogle Scholar
21Wada, K., Fukami, Y., Kakimoto, K., and Ohsato, H.: Microwave dielectric properties of textured BaLa4Ti4O15 ceramics. Jpn. J. Appl. Phys. 44, 7094 (2005).CrossRefGoogle Scholar
22Sreemoolanadhan, H. and Sebastian, M.T.: High permittivity and low loss ceramics in the BaO-SrO-Nb2O5 system. Mater. Res. Bull. 30, 653 (1995).CrossRefGoogle Scholar
23Wada, K., Kakimoto, K., and Ohsato, H.: Grain-orientation control and microwave dielectric properties of Ba4Sm9.33Ti18O54 ceramics. Jpn. J. Appl. Phys. 42, 6149 (2003).CrossRefGoogle Scholar
24Wada, K., Kakimoto, K., and Ohsato, H.: Microstructure and microwave dielectric properties of Ba4Sm9.33Ti18O54 ceramics containing columnar crystals. J. Eur. Ceram. Soc. 23, 2535 (2003).CrossRefGoogle Scholar
25Chang, L.C. and Chiou, B.S.: Effect of B2O3 nano-coating on the sintering behaviors and electrical microwave properties of Ba(Nd2-xSmx)Ti4O12 ceramics. J. Electroceram. 13, 829 (2004).CrossRefGoogle Scholar
26Harrop, P.J.: Temperature coefficients of capacitance of solids. J. Mater. Sci. 4, 370 (1969).CrossRefGoogle Scholar
27Elwell, D. and Scheel, H.J.: Crystal Growth from High-Temperature Solutions (Academic Press, New York, 1975), p. 215220.Google Scholar
28Fujimura, N., Nishihara, T., Goto, S., Xu, J., and Ito, T.: Control of preferred orientation for ZnOx films: Control of self-texture. J. Cryst. Growth 130, 269 (1993).CrossRefGoogle Scholar
29Lee, N.Y., Sekine, T., Ito, Y., and Uchino, K.: Deposition profile of RF-magnetron-sputtered BaTiO3 thin films. Jpn. J. Appl. Phys. 33, 1484 (1994).CrossRefGoogle Scholar
30Gao, C. and Xiang, X.D.: Quantitative microwave near-field microscopy of dielectric properties. Rev. Sci. Instrum. 69, 3846 (1998).CrossRefGoogle Scholar
31Kim, D.W., Hong, K.S., Kim, C.H., and Char, K.: Crystallographic orientation dependence of the dielectric constant in polymorphic BaNb2O6 thin films deposited by laser ablation. Appl. Phys. A 79, 677 (2004).CrossRefGoogle Scholar