Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T06:35:06.616Z Has data issue: false hasContentIssue false

Texture and chemical composition analyses on the Hg0.66Pb0.33Ba2Ca2Cu3Oy superconductor using the sealed quartz tube technique

Published online by Cambridge University Press:  31 January 2011

J.C.L. Chow
Affiliation:
Physics Department and Centre for Materials Science, University of Hong Kong, Hong Kong
P.C.W. Fung
Affiliation:
Physics Department and Centre for Materials Science, University of Hong Kong, Hong Kong
H.M. Shao
Affiliation:
Physics Department, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210008, China
C.C. Lam
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
Get access

Abstract

Pb-substituted Hg-based superconductor of Hg0.66Pb0.33Ba2Ca2Cu3Oy has been fabricated using the sealed quartz tube technique. R- and x-ray diffraction pattern (XDP) measurements show that the specimen has a Tc of 135 K and contains mainly the Hg-1223 phase. Scanning electron microscopy/energy dispersive x-ray analysis (SEM/EDX) and transmission electron microscopy/energy dispersive x-ray analysis (TEM/EDX) were employed to study the texture and chemical composition of the specimen. It is found that the specimen contains round-shaped grains with a mixture of Hg-1223, BaCuO2, and Ca0.85CuO2 phases, square-shaped grains with a formula of PbBa2O3, small single crystals with single Hg-1223 phase, and crystal-like layers with a mixture of Hg-1223 and BaCuO2 phase. We consider that though the doping of Pb can benefit the stabilization of the Hg-1223 phase, it introduces other impurity phases and textures in the specimen at the same time.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Putilin, S. N., Antipov, E. V., Chmaissem, O., and Marezio, M., Nature (London) 362, 226 (1993).CrossRefGoogle Scholar
2.Schilling, A., Cantoni, M., Guo, J. D., and Ott, H. R., Nature (London) 363, 56 (1993).CrossRefGoogle Scholar
3.Putilin, S. N., Antipov, E. V., and Marezio, M., Physica C 212, 266 (1993).CrossRefGoogle Scholar
4.Itoh, M., Tokiwa-Yamamoto, A., Adachi, S., and Yamauchi, H., Physica C 212, 271 (1993).CrossRefGoogle Scholar
5.Tokiwa-Yamamoto, A., Isawa, K., Itoh, M., Adachi, S., and Yamauchi, H., Physica C 216, 250 (1993).CrossRefGoogle Scholar
6.Hirabayshi, M., Tokiwa, K., Tokumoto, M., and Ihara, H., Jpn, J. Appl. Phys. 32, L1206 (1992).CrossRefGoogle Scholar
7.Huang, Z. J., Meng, R. L., Qiu, X. D., Sun, Y. Y., Kulik, J., Xue, Y. Y., and Chu, C. W., Physica C 217, 1 (1993).CrossRefGoogle Scholar
8.Meng, R. L., Beauvais, L., Zhang, X. N., Huang, Z. J., Sun, Y. Y., Xue, Y. Y., and Chu, C. W., Physica C 216, 21 (1993).CrossRefGoogle Scholar
9.Isawa, K., Tokiwa-Yamamoto, A., Itoh, M., Adachi, S., and Yamauchi, H., Physica C 217, 11 (1993).CrossRefGoogle Scholar
10.Isawa, K., Tokiwa-Yamamoto, A., Itoh, M., Adachi, S., and Yamauchi, H., Physica C 222, 33 (1994).CrossRefGoogle Scholar
11.Chmaissem, O., Wessels, L., and Sheng, Z. Z., Physica C 230, 231 (1994).CrossRefGoogle Scholar
12.Shao, H. M., Lam, C. C., Fung, P. C. W., Wu, X. S., Du, J.H., Shen, G. J., J.Chow, C. L., Ho, S.L., Hung, K. C., and Yao, X. X., Physica C 246, 207 (1995).CrossRefGoogle Scholar
13.Gao, L., Xue, Y. Y., Chen, F., Xiong, Q., Meng, R. L., Ramirez, D., and Chu, C. W., Phys. Rev. B 50 (6), 4260 (1994).CrossRefGoogle Scholar
14.Shao, H. M., Shen, L. J., Shen, J.C., Hua, X. Y., Yuan, P. F., and Yao, X. X., Physica C 232, 5 (1994).CrossRefGoogle Scholar
15.Schilling, A., Cantoni, M., Jeandupeux, O., Guo, J.D., and Ott, H. R., in Adv. Superconductivity IV, edited by Fujita, T. and Shiohara, Y. (Springer, Tokyo, 1994), p. 231.CrossRefGoogle Scholar
16.Karpinski, J., Schwer, H., Mangelschots, I., Conder, K., Morawski, A., Lada, T., and Paszewin, A., Physica C 234, 10 (1994).CrossRefGoogle Scholar
17.Iqbal, Z., Datta, T., Kirren, D., Lungu, A., Barry, J. C., Owens, F. J., Rinzler, A. G., Yang, D., and Reidinger, F., Phys. Rev. B 49, 12322 (1994).CrossRefGoogle Scholar
18.Xue, Y. Y., Huang, Z. J., and Qiu, Z. D., Mod. Phys. Lett. B. 7, 1833 (1993).CrossRefGoogle Scholar
19.Fung, P. C. W., Chow, J. C. L., and Gao, J., J. Supercond. 6 (5), 327 (1993).CrossRefGoogle Scholar
20.Chow, J. C. L., Fung, P. C. W., Du, Z. L., Yu, T. F., and Mok, Y. C., Cryogenics 34, 245 (1994).CrossRefGoogle Scholar
21.Chow, J. C. L. and Fung, P. C. W., Chem. Phys. Lett. 223, 185 (1994).CrossRefGoogle Scholar
22.Fung, P. C. W., Du, Z. L., Chow, J. C. L., He, Z. H., Yu, T. F., Luo, Y. Y., Li, Q. Y., and Lu, Y., Physica C 212, 279 (1993).CrossRefGoogle Scholar
23.Du, Z. L., Fung, P. C. W., Chow, J. C. L., Yu, T. F., He, Z. H., Li, Y., Luo, Y. Y., and Zhang, J.X., Physica C 215, 319 (1993).CrossRefGoogle Scholar
24.Chmaissem, O., Huang, Q., Antipov, E.V., Putilin, S.N., Marezio, M., Loureiro, S. M., Capponi, J. J., Tholence, J.L., and Santoro, A., Physica C 217, 265 (1993).CrossRefGoogle Scholar
25.Li, J., Ding, S. Y., Shao, H. M., Zhu, J. S., and Wang, Y. N., Physica C 232, 10 (1994).CrossRefGoogle Scholar
26.Marezio, M., Antipov, E., Copponi, J., Chaillout, C., Loureiro, S., Putilin, S., Santoro, A., and Tholence, J., Physica B 197, 570 (1994).CrossRefGoogle Scholar