Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T03:55:31.461Z Has data issue: false hasContentIssue false

Tensile and fatigue fracture mechanisms of a Zr-based bulk metallic glass

Published online by Cambridge University Press:  31 January 2011

Z.F. Zhang
Affiliation:
IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171, Dresden, Germany
J. Eckert
Affiliation:
IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171, Dresden, Germany
L. Schultz
Affiliation:
IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171, Dresden, Germany
Get access

Abstract

The tensile and fatigue fracture behavior of Zr59Cu20Al10Ni8Ti3 bulk metallic glass was investigated. It was found that under tensile load the metallic glass always displays brittle shear fracture and the shear fracture plane makes an angle of θT (=54°) with respect to the stress axis, which obviously deviates from the maximum shear stress plane (45°). Under cyclic tension-tension loading, fatigue cracks first initiate along the localized shear bands on the specimen surface, then propagate along a plane basically perpendicular to the stress axis. Tensile fracture surface observations reveal that fracture first originates from some cores, then propagates in a radiate mode, leading to the formation of a veinlike structure and final failure. The fatigue fracture processes of the specimens undergo a propagation stage of fatigue cracks followed by catastrophic failure. Based on these results, a tensile fracture criterion for bulk metallic glasses is proposed by taking the effect of normal stress into account. It is suggested that both normal and shear stresses affect the fracture process of metallic glasses and cause the deviation of the fracture angle away from 45°

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Johnson, W.L., MRS Bull. 24(10), 42 (1999).CrossRefGoogle Scholar
Inoue, A., Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
Pampillo, C.A., Scripta Metall. 6, 915 (1972).CrossRefGoogle Scholar
Leamy, H.J., Chen, H.S., and Wang, T.T., Metall. Trans. A 3, 699 (1972).CrossRefGoogle Scholar
Pampillo, C.A., J. Mater. Sci. 10, 1194 (1975).CrossRefGoogle Scholar
Spaepen, F., Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
Argon, A.S., Acta Metall. 27, 47 (1979).CrossRefGoogle Scholar
Donovan, P.E. and Stobbs, W.M., Acta Metall. 29, 1419 (1981).CrossRefGoogle Scholar
Donovan, P.E., Mater. Sci. Eng. 98, 487 (1988).CrossRefGoogle Scholar
Steif, P.S., Spaepen, F., and Hutchinson, J.W., Acta Metall. 30, 447 (1982).CrossRefGoogle Scholar
Donovan, P.E., Acta Metall. 37, 445 (1989).CrossRefGoogle Scholar
Leng, Y. and Courtney, T.H., J. Mater. Sci. 26, 588 (1991).CrossRefGoogle Scholar
Fan, C., and Inoue, A., Appl. Phys. Lett. 77, 46 (2000).CrossRefGoogle Scholar
Inoue, A., Adv. Eng. Mater. 3, 669 (2001).3.0.CO;2-P>CrossRefGoogle Scholar
Eckert, J., Leonhard, A., Wei, B., Heilmaier, M., and Schultz, L., Adv. Eng. Mater. 3, 41 (2001).3.0.CO;2-S>CrossRefGoogle Scholar
Conner, R.D., Dandliker, R.B., and Johnson, W.L., Acta Mater. 46, 6089 (1998).CrossRefGoogle Scholar
Choi-Yim, H., Busch, R., Koster, U., and Johnson, W.L., Acta Mater. 47, 2455 (1999).CrossRefGoogle Scholar
Choi-Yim, H., Schroers, J., and Johnson, W.L., Appl. Phys. Lett. 80, 1906 (2002).CrossRefGoogle Scholar
Hays, C.C., Kim, C.P., and Johnson, W.L., Phys. Rev. Lett. 84, 2901 (2000).CrossRefGoogle Scholar
Kühn, U., Eckert, J., Mattern, N., and Schultz, L., Appl. Phys. Lett. 80, 2478 (2002).CrossRefGoogle Scholar
Honeycombe, R.W.K., Plastic Deformation of Metals (Cambridge Press, 1969).Google Scholar
Takayama, S., Scripta Metall. 13, 463 (1979).CrossRefGoogle Scholar
Lowhaphandu, P., Montgomery, S.L., and Lewandowski, J.J., Scripta Mater. 41, 19 (1999).CrossRefGoogle Scholar
Wright, W.J., Saha, R., and Nix, W.D., Mater. Trans. 42, 642 (2001).CrossRefGoogle Scholar
He, G., Lu, J., Bian, Z., Chen, D.J., Chen, G.L., Tu, G.H., and Chen, G.J., Mater. Trans. 42, 356 (2001).CrossRefGoogle Scholar
Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K., Acta Mater. 49, 2645 (2001).CrossRefGoogle Scholar
Liu, C.T., Heatherly, L., Easton, D.S., Carmichael, C.A., Schneibel, J.H., Chen, C.H., Wright, J.L., Yoo, M.H., Horton, J.A., and Inoue, A., Metall. Mater. Trans. A 29, 1811 (1998).CrossRefGoogle Scholar
Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A., and Higashi, K., Scripta Mater. 46, 43 (2002).CrossRefGoogle Scholar
Alpas, A.T., Edwards, L., and Neid, C.N., Mater. Sci. Eng. 98, 501 (1988).CrossRefGoogle Scholar
Gilbert, C.J., Ritchie, R.O., and Johnson, W.L., Appl. Phys. Lett. 71, 476 (1997).CrossRefGoogle Scholar
Yokoyama, Y., Nishiyama, N., Fukaura, K., and Sunada, H., Mater. Trans., JIM 41, 675 (2000).CrossRefGoogle Scholar
Flores, K.M. and Dauskardt, R.H., J. Mater. Res. 14, 638 (1999).CrossRefGoogle Scholar
Gilbert, C.J., Schroeder, V., and Ritchie, R.O., Metall. Mater. Trans. A 30, 1739 (1999).CrossRefGoogle Scholar
Tatschl, A., Gilbert, C.J., Schroeder, V., Pippan, R., and Ritchie, R.O., J. Mater. Res. 15, 898 (2000).CrossRefGoogle Scholar
Fujita, K., Inoue, A., and Zhang, T., Scripta Mater. 44, 1629 (2001).CrossRefGoogle Scholar
Schroeder, V., Gilbert, C.J., and Ritchie, R.O., Mater. Sci. Eng. A 317, 145 (2001).CrossRefGoogle Scholar
Verduzco, J.A., Hand, R.J., and Davies, H.A., Int. J. Fatigue 24, 1089 (2002).CrossRefGoogle Scholar
Essmann, U., Gosele, U., and Mughrabi, H., Philos. Mag. 44, 405 (1981).CrossRefGoogle Scholar
Hunsche, A. and Neumann, P., Acta Metall. 34, 207 (1986).CrossRefGoogle Scholar
Saletore, M. and Taggart, R., Mater. Sci. Eng. 36, 259 (1978).CrossRefGoogle Scholar
Zhang, Z.F., Wang, Z.G., and Sun, Z.M., Acta Mater. 48, 2875 (2001).CrossRefGoogle Scholar
Mughrabi, H., Ackermann, F., and Herz, K., ASTM STP, 81, 5 (1981).Google Scholar
Zhang, Z.F. and Wang, Z.G., Philos. Mag. Lett. 80, 483 (2000).CrossRefGoogle Scholar
Gourgues, A.F., Mater. Sci. Technol 18, 119 (2002).CrossRefGoogle Scholar
Eckert, J., Kühn, U., Mattern, N., Reger-Leonhard, A., Heilmaier, M., Scripta Mater. 44, 1587 (2001).CrossRefGoogle Scholar
Kawamura, Y., Shibata, T., Inoue, A., and Masumoto, T., Scripta Mater. 37, 431 (1997).CrossRefGoogle Scholar
Suresh, S., Fatigue of Materials, 2nd ed. (Cambridge Press, 1998).CrossRefGoogle Scholar
Zhang, T. and Inoue, A., Mater. Trans., JIM 39, 1230 (1998).CrossRefGoogle Scholar
Gao, M.C., Hackenburg, R.E., and Shiflet, G.J., Mater. Trans. 42, 1741 (2002).CrossRefGoogle Scholar
Hufnagel, T.C., El-Deiry, P., Vinci, R.P., Scripta Mater. 43, 1071 (2000).CrossRefGoogle Scholar