Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T12:59:18.922Z Has data issue: false hasContentIssue false

Tensile and compressive behaviors of open-tip carbon nanocones under axial strains

Published online by Cambridge University Press:  30 June 2011

Ming-Liang Liao
Affiliation:
Department of Aircraft Engineering, Air Force Institute of Technology, Kaohsiung 82047, Taiwan
Chin-Hsiang Cheng*
Affiliation:
Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 70101, Taiwan
Yang-Ping Lin
Affiliation:
Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 70101, Taiwan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The influences of temperature, cone height, and apex angle on the tensile and compressive behaviors of open-tip carbon nanocones (CNCs) under axial strains were examined. The tensile failure strain and failure load of the CNC were found to decline evidently as the system temperature increases. The average failure strain decreases with the growth in the cone height. Concerning compressive behaviors, the critical strain and critical load of the CNC reduce manifestly with the increase in the system temperature and the apex angle. As the cone height grows, the critical strain decreases evidently but the critical load has no obvious change. The buckling mode does not have much variation when the temperature increases. It displays a more distorted buckling pattern with the growth in the cone height and transfers from an axisymmetric pattern to an unsymmetrical and more warped pattern when the apex angle expands.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S.: Carbon nanotubes: Past, present, and future. Nature 354, 56 (1991).Google Scholar
2.Harris, P.J.F.: Carbon Nanotube Science: Synthesis, Properties and Applications (Cambridge University Press, Cambridge, UK, 2009).Google Scholar
3.Ge, M. and Sattler, K.: Observation of fullerene cones. Chem. Phys. Lett. 220, 192 (1994).CrossRefGoogle Scholar
4.Krishnan, A., Dujardin, E., Treacy, M.M.J., Hugdhl, J., Lynum, S., and Ebbesen, T.W.: Graphitic cones and the nucleation of curved carbon surfaces. Nature 388, 451 (1997).Google Scholar
5.Naess, S.N., Elgsaeter, A., Helgesen, G., and Knudsen, K.D.: Carbon nanocones: wall structure and morphology. Sci. Technol. Adv. Mater. 10, 065002 (2009).CrossRefGoogle ScholarPubMed
6.Kiselev, N.A., Hammer, J., and Kotosonov, A.S.: Carbon nanotubes from polyethylene precursors: Structure and structural changes caused by thermal and chemical treatment revealed by HREM. Carbon 36, 1149 (1998).CrossRefGoogle Scholar
7.Terrones, H., Hayashi, T., Muñoz-Navia, M., Terrones, M., Kim, Y.A., Grobert, N., Kamalakaran, R., Dorantes-Davila, J., Escudero, R., Dresselhaus, M.S., and Endo, M.: Graphitic cones in palladium catalysed carbon nanofibers. Chem. Phys. Lett. 343, 241 (2001).CrossRefGoogle Scholar
8.Endo, M., Kim, Y.A., Hayashi, T., Fukai, Y., Oshida, K., Terrones, M., Yanagisawa, T., Higaki, S., and Dresselhaus, M.S.: Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl. Phys. Lett. 80, 1267 (2002).CrossRefGoogle Scholar
9.Eksioglu, B. and Nadarajah, A.: Structural analysis of conical carbon nanofibers. Carbon 44, 360 (2006).CrossRefGoogle Scholar
10.Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., and Taskahashi, K.: Nanoaggregates of single-walled graphitic carbon nanohorns. Chem. Phys. Lett. 309, 165 (1999).CrossRefGoogle Scholar
11.Gogotsi, Y., Dimovski, S., and Libera, J.A.: Conical crystals of graphite. Carbon 40, 2263 (2002).Google Scholar
12.Zhang, G., Jiang, X., and Wang, E.: Tubular graphite cones. Science 300, 475 (2003).CrossRefGoogle ScholarPubMed
13.Tsakadze, Z.L., Levchenko, I., Ostrikov, K., and Su, X.: Plasma-assisted self-organized growth of uniform carbon nanocone arrays. Carbon 45, 2022 (2007).CrossRefGoogle Scholar
14.Levchenko, I., Ostrikov, K., Long, J.D., and Xu, S.: Plasma-assisted self-sharpening of platelet-structured single-crystalline carbon nanocones. Appl. Phys. Lett. 91, 113115 (2007).CrossRefGoogle Scholar
15.Hsieh, J.Y., Chen, C., Chen, J.L., Chen, C.I., and Hwang, C.C.: The nanoindentation of a copper substrate by single-walled carbon nanocone tips: A molecular dynamics study. Nanotechnology 20, 095709 (2009).CrossRefGoogle Scholar
16.Chen, I.C., Chen, L.H., Gapin, A., Jin, S., Yuan, L. and Liou, S.H.: Iron-platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging. Nanotechnology 19, 075501 (2008).CrossRefGoogle ScholarPubMed
17.Yu, S.S. and Zheng, W.T.: Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons. Nanoscale 2, 1069 (2010).Google Scholar
18.Jordan, S.P. and Crespi, V.H.: Theory of carbon nanocones: mechanical chiral inversion of a micron-scale three-dimensional object. Phys. Rev. Lett. 93, 255504 (2004).Google Scholar
19.Tsai, P.C. and Fang, T.H.: A molecular dynamics study of the nucleation, thermal stability and nanomechanics of carbon nanocones. Nanotechnology 18, 105702 (2007).CrossRefGoogle Scholar
20.Liew, K.M., Wei, J.X., and He, X.Q.: Carbon nanocones under compression: Buckling and post-buckling behaviors. Phys. Rev. B 75, 195435 (2007).CrossRefGoogle Scholar
21.Wei, J.X., Liew, K.M., and He, X.Q.: Mechanical properties of carbon nanocones. Appl. Phys. Lett. 91, 261906 (2007).Google Scholar
22.Yakobson, B.I., Brabec, C.J., and Bernholc, J.: Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 76, 2551 (1996).Google Scholar
23.Yakobson, B.I., Campbell, M.P., Brabec, C.J., and Bernholc, J.: High strain rate fracture and C-chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8, 341 (1997).CrossRefGoogle Scholar
24.Tersoff, J.: New empirical model for the structural properties of silicon. Phys. Rev. Lett. 56, 632 (1986).Google Scholar
25.Tersoff, J.: Modeling solid-state chemistry: Interatomic potentials for multi-component systems. Phys. Rev. B 39, 5566 (1989).CrossRefGoogle Scholar
26.Haile, J.M.: Molecular Dynamics Simulation (Wiley–Interscience, New York, 1992).Google Scholar
27.Rapaport, D.C.: The Art of Molecular Dynamics Simulations (Cambridge University Press, Cambridge, UK, 2004).CrossRefGoogle Scholar
28.Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., and Sinnott, S.B.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter. 14, 783 (2002).CrossRefGoogle Scholar