Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T08:55:20.361Z Has data issue: false hasContentIssue false

Temperature dependence of tracer diffusion coefficients in polystyrene

Published online by Cambridge University Press:  03 March 2011

Peter F. Green
Affiliation:
Department of Materials Science and Engineering and the Materials Science Center, Cornell University, Ithaca, New York 14853
Edward J. Kramer
Affiliation:
Department of Materials Science and Engineering and the Materials Science Center, Cornell University, Ithaca, New York 14853
Get access

Abstract

The temperature dependence of the tracer diffusion coefficient D* of long deuterated polystyrene (d-PS) chains of molecular weight M>Mc, where Mc is the critical molecular weight for entanglement, diffusing into highly entangled PS matrices, each of molecular weight P = 2×107, is studied using forward recoil spectrometry. It is found that the temperature dependence of D*/T, reflected primarily in the monomeric friction coefficient, is accurately described by a Vogel equation. The constants that are used to fit these results are independent of M and are the same as those used to fit the temperature dependence of the zero shear rate viscosity of polystyrene.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Green, P. F., Palmstrøm, C. J., Mayer, J. W., and Kramer, E. J., Macromolecules 18, 501 (1985).CrossRefGoogle Scholar
2Mills, P. J., Green, P. F., Palmstrøm, C. J., and Kramer, E. J., Appl. Phys. Lett. 45, 958 (1984).CrossRefGoogle Scholar
3Bartels, C. R., Crist, B., and Graessley, W. W., Macromolecules 17, 2702 (1984).CrossRefGoogle Scholar
4Antonietti, M., Coutandin, J., and Sillescu, H., Macromol. Chem., Rapid Commun. 5, 525 (1984).CrossRefGoogle Scholar
5Klein, J., Nature (London) 271, 143 (1978).CrossRefGoogle Scholar
6Klein, J. and Briscoe, B., Proc. R. Soc. London, Ser. A 365, 53 (1979).Google Scholar
7Antonietti, M., Coutandin, J., Grutter, R., and Sillescu, H., Macromolecules 17, 798 (1984).CrossRefGoogle Scholar
8Tirrell, M., Rubber Chem. Technol. 57, 523 (1984).CrossRefGoogle Scholar
9deGennes, P. G., J. Chem. Phys. 55 572 (1971).CrossRefGoogle Scholar
10Doi, M. and Edwards, S. F., J. Chem. Soc, Faraday Trans. 2, 1798 (1978).Google Scholar
11Graessley, W. W., J. Polym. Sci., Polym. Phys. Ed. 18, 27 (1980).CrossRefGoogle Scholar
12Ferry, J. D., Viscoelastic Properties of Polymers (Wiley, New York, 1981), 3rd. ed., Chap. 11.Google Scholar
13Nemoto, N., Landry, M. R., Icksam, I. N., and Yu, H., Polym. Commun. 25, 141 (1984).Google Scholar
14Fletcher, D. and Klein, J., Polym. Commun. 26, 2 (1985).Google Scholar
15Green, P. F., Mills, P. J., Palmstrøm, C. J., Mayer, J. W., and Kramer, E. J., Phys. Rev. Lett. 53, 2145 (1984).CrossRefGoogle Scholar
16Graessley, W. W., R. Soc. Chem. Faraday Div., Faraday Symp. 18, 1 (1983).Google Scholar
17Fox, T. G. and Allen, V. R., J. Chem. Phys. 41, 344 (1964).CrossRefGoogle Scholar
18Berry, G. C. and Fox, T. G., Adv. Polym. Sci. 5, 261 (1968).CrossRefGoogle Scholar
19Graessley, W. W. and Roovers, J., Macromolecules 12, 959 (1979).CrossRefGoogle Scholar