Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T13:07:35.906Z Has data issue: false hasContentIssue false

Temperature Dependence of in situ Constituent Properties of Polymer-infiltration-pyrolysis-processed Nicalon™ SiC Fiber-reinforced SiC Matrix Composite

Published online by Cambridge University Press:  31 January 2011

Shuqi Guo
Affiliation:
Institute of Industrial Science, The University of Tokyo, 7–22–1, Roppongi, Minato-ku, Tokyo 106–8558, Japan
Yutaka Kagawa*
Affiliation:
Institute of Industrial Science, The University of Tokyo, 7–22–1, Roppongi, Minato-ku, Tokyo 106–8558, Japan
*
a)Address all correspondence to this author. e-mail: [email protected].
Get access

Abstract

Temperature dependence of in situ fiber strength, effective interface shear stress, Young's modulus of matrix, and matrix fracture energy in a polymer-infiltrationpyrolysis (PIP)-processed two-dimensional plain-woven fabric carbon-coated Nicalon™ SiC fiber-reinforced SiC matrix composite was studied through a tensile test in air at 298 (room temperature), 800, and 1200 K. In situ fiber strength and effective interface shear stress were determined by fracture mirror size and fiber pullout length measurements, respectively. The fiber strength was insensitive to test temperature up to 800 K but dropped significantly at 1200 K. Conversely, the interface shear stress showed a strong temperature dependence, decreasing at 800 K and drastically increasing at 1200 K. The temperature dependence of both values was reasonably explained. Temperature dependence of Young's modulus of matrix was derived from Young's modulus of the composite and fiber and ranged from ≈40 to ≈38 GPa. Matrix fracture energy was also determined from the transverse matrix cracking stress and ranged from ≈16 to ≈5.5 J/m2. Both Young's modulus of matrix and the matrix fracture energy showed only slight temperature dependence up to 800 K; however, both values decreased significantly at 1200 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lee, S.S., Zawada, L.P., Staehler, J.M., and Folsom, C.A., J. Am. Ceram. Soc. 81, 1797 (1998).CrossRefGoogle Scholar
2.Sun, E.Y., Nutt, S.R., and Brennan, J.J., J. Am. Ceram. Soc. 79, 1521 (1996).CrossRefGoogle Scholar
3.Droillard, C., Voisard, P., Heibst, C., and Lamon, J., J. Am. Ceram. Soc. 78, 1201 (1995).CrossRefGoogle Scholar
4.Prouhet, S., Camus, G., Labrugere, C., Guette, A., and Martin, E., J. Am. Ceram. Soc. 77, 649 (1994).CrossRefGoogle Scholar
5.Singh, D., Singh, J.P., and Wheeler, M.J., J. Am. Ceram. Soc. 79, 591 (1996).CrossRefGoogle Scholar
6.Takeda, M., Imai, Y., Ichikawa, H., Kagawa, Y., Iba, H., and Kakisawa, H., Ceram. Eng. Sci. Proc. 18(3), 779 (1997).CrossRefGoogle Scholar
7.Kagawa, Y. and Goto, K., J. Mater. Sci. Lett. 16, 850 (1997).CrossRefGoogle Scholar
8.Shin, D.W. and Tanaka, T., J. Am. Ceram. Soc. 77, 97 (1994).CrossRefGoogle Scholar
9.Thouless, M.D., Sbaizero, O., Sigl, L.S., and Evans, A.G., J. Am. Ceram. Soc. 72, 525 (1989).CrossRefGoogle Scholar
10.Sawyer, L.C., Jamieson, M., Brikowski, D., Haider, M.I., and Chen, R.T., J. Am. Ceram. Soc. 70, 798 (1987).CrossRefGoogle Scholar
11.Weibull, W., J. Appl. Mech. 18, 293 (1951).CrossRefGoogle Scholar
12.Beyerle, D.S., Spearing, S.M., and Evans, A.G., J. Am. Ceram. Soc. 75, 3321 (1992).CrossRefGoogle Scholar
13.McNulty, J.C. and Zok, F.W., J. Am. Ceram. Soc. 80, 1535 (1997).CrossRefGoogle Scholar
14.Clark, T.J., Arons, R.M., and Stamatoff, J.B., Ceram. Eng. Sci. Proc. 6, 576 (1985).CrossRefGoogle Scholar
15.Pysher, D.J., Goretta, K.C., Hodder, R.S., and Tressler, R.E., J. Am. Ceram. Soc. 72, 284 (1988).CrossRefGoogle Scholar
16.Singh, D. and Singh, J.P., Ceram. Eng. Sci. Proc. 13, 257 (1992).CrossRefGoogle Scholar
17.Mackin, T.J. and Zok, F.W., J. Am. Ceram. Soc. 75, 3169 (1992).CrossRefGoogle Scholar
18.Thouless, M.D. and Evans, A.G., Acta Metall. 36, 517 (1988).CrossRefGoogle Scholar
19.Vagaggini, E., Domergue, J.M., and Evans, A.G., J. Am. Ceram. Soc. 78, 2709 (1995).CrossRefGoogle Scholar
20.Llorca, J., Elices, M., and Celemin, J.A., Acta Mater. 46, 2441 (1998).CrossRefGoogle Scholar
21.Filipuzzi, L., Camus, G., Naslain, R., and Thebault, J., J. Am. Ceram. Soc. 72, 459 (1994).CrossRefGoogle Scholar
22.Tohyama, N., Ph.D. Thesis, The University of Tokyo, Tokyo, Japan (1999).Google Scholar
23.Xia, Z.C., Carr, R.R., and Hutchinson, J.W., Acta Mater. 41, 2365 (1993).CrossRefGoogle Scholar
24.Takeda, M., Imai, Y., and Kagawa, Y. (unpublished).Google Scholar
25.Yoshida, H., Miyata, N., Sagawa, M., Ishikawa, S., Naito, K., Enomoto, N., and Yamagishi, C., J. Ceram. Soc. Jpn. 100, 454 (1992).CrossRefGoogle Scholar
26.Veltri, R.D., Condit, D.A., and Galasso, F.S., J. Am. Ceram. Soc. 72, 478 (1989).CrossRefGoogle Scholar
27.Stinton, D.P., Caputo, A.J., and Lowden, R.A., Am. Ceram. Soc. Bull. 65, 347 (1986).Google Scholar