Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T00:25:35.387Z Has data issue: false hasContentIssue false

Temperature dependence of epitaxial growth of Al on Si(111) by chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Satoshi Nishikawa
Affiliation:
Oki Electric Industry Co., Semiconductor Technology Laboratory, 550-5, Higashiasakawa-cho, Hachioji-shi, Tokyo 193, Japan
Kouichi Tani
Affiliation:
Oki Electric Industry Co., Semiconductor Technology Laboratory, 550-5, Higashiasakawa-cho, Hachioji-shi, Tokyo 193, Japan
Tetsuo Yamaji
Affiliation:
Oki Electric Industry Co., Semiconductor Technology Laboratory, 550-5, Higashiasakawa-cho, Hachioji-shi, Tokyo 193, Japan
Get access

Abstract

Chemical vapor deposition of aluminum films using tri-isobutyl aluminum on Si(111) wafers has been studied from the viewpoint of structural and electrical properties of Al films as a function of substrate temperature (Ts). The epitaxial relation of Al on Si is found to be very sensitive to Ts, thus changing from Al(100)))Si(111) with Al[1$\overline 1$0]))Si[11$\overline 1$] to Al(111)))Si(111) with Al[1$\overline 1$0]))Si[1$\overline 1$0] around 410 °C in the course of increasing Ts. The epitaxial relation is mainly determined at the initial stage of the deposition, but in some cases the relation changes with increasing film thickness. Above 420 °C, single-crystalline Al(111) is grown on Si(111), which has resistivity as low as the bulk value, high reflectivity, and a very flat surface.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Green, M. L., Levy, R. A., Nuzzo, R. G., and Coleman, E., Thin Solid Films 114, 367 (1984)CrossRefGoogle Scholar
2.Amazawa, T., Nakamura, H., and Arita, Y., Tech. Digest IEEE IEDM, 442 (1988).Google Scholar
3.Kawamoto, H., Sakaue, H., Takehiro, S., and Horiike, Y., Jpn. J. Appl. Phys. 29, 2657 (1990).CrossRefGoogle Scholar
4.Tsubouchi, K., , K., Masu, , Micoshiba, N., Matsumoto, S., Asaba, T., Marui, T., and Kajikawa, T., Digest of Tech. Papers, 1990 Symp. on VLSI Technology (The IEEE Electron Devices Society, 1990), p. 5.Google Scholar
5.Shinzawz, T., Sugai, K., Kishida, S., and Okabayashi, H., in Tungsten and Other Advanced Metals for VLSIIULSI Applications V, edited by Wong, S. S. and Furukawa, S. (Mater. Res. Soc. Symp. Proc. V-5, Pittsburgh, PA, 1990), p. 337.Google Scholar
6.Kobayashi, T., Sekiguchi, A., Hosokawa, N., and Asamaki, T., Jpn. J. Appl. Phys. 27, 1775 (1988).CrossRefGoogle Scholar
7.Sekiguchi, A., Kobayashi, T., Hosokawa, N., and Asamaki, T., J. Vac. Sci. Technol. A8, 2876 (1990).Google Scholar
8.d'Heurle, F., Berenbaum, L., and Rosenberg, R., Trans. Metall. Soc. AIME 242, 502 (1968).Google Scholar
9.Yamada, I., Usui, H., Tanaka, S., Dahmen, U., and Westmacott, K. H., J. Vac. Sci. Technol. A8, 1443 (1990).CrossRefGoogle Scholar
10.Bent, B. E., Dubois, L. H., and Nuzzo, R. G., in Chemical Perspectives of Microelectronic Materials, edited by Gross, M. E., Jasinski, J. M., and Yates, J. T. Jr (Mater. Res. Soc. Symp. Proc. 131, Pittsburgh, PA, 1989), p. 327Google Scholar