Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T13:09:32.876Z Has data issue: false hasContentIssue false

Temperature and annealing dependence of the longitudinal ultrasonic velocity in aluminum alloys

Published online by Cambridge University Press:  31 January 2011

Ward Johnson
Affiliation:
Metallurgy Division, National Institutes of Standards and Technology, Gaithersburg, Maryland 20899
F. Mauer
Affiliation:
Metallurgy Division, National Institutes of Standards and Technology, Gaithersburg, Maryland 20899
D. Pitchure
Affiliation:
Metallurgy Division, National Institutes of Standards and Technology, Gaithersburg, Maryland 20899
S.J. Norton
Affiliation:
Metallurgy Division, National Institutes of Standards and Technology, Gaithersburg, Maryland 20899
Y. Grinberg
Affiliation:
Metallurgy Division, National Institutes of Standards and Technology, Gaithersburg, Maryland 20899
F. Bendec
Affiliation:
Metallurgy Division, National Institutes of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

The longitudinal ultrasonic velocities of four commercial aluminum alloys and Al(1.8 wt.% Si) were measured between room temperature and the solidus temperatures. In all of the samples, the velocity deviated significantly from a linear temperature dependence at the highest temperatures. In commercially pure (1100) aluminum, this effect is found to be consistent with reported low-frequency damping and elastic modulus changes that are associated with dislocations or grain boundaries. In the four heat-treatable alloys studied, an additional contribution to the nonlinear temperature dependence arises from the dissolution of precipitates at elevated temperatures. Irreversible velocity changes occur during the first heating, as a result of the recovery from work-hardening and heat treatments which were performed during the production of the material. Small hysteretic changes above ∼ 250 °C are correlated with the precipitation and dissolution of alloying elements. The activation energy for the hysteretic changes in Al(1.8% Si) is found to be 0.82 eV, which is consistent with precipitation limited by silicon diffusion along grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Garber, J. A. and Granato, A. V.Phys. Rev. B11, 3990 (1975).Google Scholar
2Stanke, F. E.J. Acoust. Soc. Am. 75, 665 (1984).CrossRefGoogle Scholar
3Maxfield, B. W.Kuramoto, A. and Hulbert, J. K.Mater. Eval. 45, 1166 (1987).Google Scholar
4Thermophysical Properties of Matter, Vol. 12, Thermal Expansion, Metallic Elements and Alloys, edited by Touloukian, Y. S. (IFI/Plenum, New York, 1975).Google Scholar
5Aluminum, Vol. I., Properties, Physical Metallurgy and Phase Diagrams, edited by Horn, K. R. Van (American Society for Metals, Metals Park, OH, 1967).Google Scholar
6Naimon, E. R.Ledbetter, H. M. and Weston, W. F.J. Mater. Sci. 10, 1309 (1975).CrossRefGoogle Scholar
7Kamm, G.N. and Alers, G.A.J. Appl. Phys. 35, 327 (1964).CrossRefGoogle Scholar
8Nowick, A. S. and Berry, B. S.Anelastic Relaxation in Crystalline Solids (Academic, New York, 1972).Google Scholar
9Niblett, D.H.Adv. Phys. 9, 2 (1960).CrossRefGoogle Scholar
10Chambers, R. H. Ph. D. Thesis Department of Physics, Carnegie Institute of Technology, 1957.Google Scholar
11Birnbaum, H.K. and Levy, M.Act a Metall. 4, 84 (1956).Google Scholar
12Friedel, J.Boulanger, C. and Crussard, C.Acta Metall. 3, 380 (1955).CrossRefGoogle Scholar
13Simmons, G. and Wang, H.Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (M.I.T., Cambridge, 1971).Google Scholar
14Gerlich, D. and Fisher, E.S.J. Phys. Chem. Solids 30, 1197 (1969).Google Scholar
15Brammer, J.A. and Percival, C.M.Exp. Mech. 10, 245 (1970).CrossRefGoogle Scholar
16Asay, J.R. and Guenther, A.H.J. Appl. Phys. 38, 4086 (1967).CrossRefGoogle Scholar
17Asay, J.R.Ultrasonic and Thermal Studies of Selected Plastics, Laminated Materials, and Metals (Air Force Weapons Lab. Report No. AFWL-TR-67-91, 1968).Google Scholar
18Johnson, W. L.Norton, S.J.Bendec, F. and Pless, R.J. Acoust. Soc. Am. 91, 2637 (1992).Google Scholar
19Rokhlin, L.L.Phys. Metals and Metallography 28, 206 (1969).Google Scholar
20Rokhlin, L.L. in Structure and Properties of Light Alloys, edited by Korol'kov, A.M. (Amerind, New Delhi, India, 1980), p. 109.Google Scholar
21Kattner, U. R. in Binary Alloy Phase Diagrams, edited by Massalski, T. B. (ASM INTERNATIONAL, Materials Park, OH, 1990), Vol. 1, p. 147.Google Scholar
22J.Bell, F.W.Philos. Mag. 2, 1113 (1957).CrossRefGoogle Scholar
23Boulanger, C.Revde Metall. 51, 210 (1954).Google Scholar
24Kamioka, H. and Sumino, Y.J. Phys. Soc. Jpn. 54, 1861 (1985).Google Scholar
25Kamioka, H.J. Phys. Soc. Jpn. 53, 1349 (1984).Google Scholar
26Saunders, G. A.Nature 216, 1298 (1967).CrossRefGoogle Scholar
27Aluminum, Properties and Physical Metallurgy, edited by Hatch, J. E. (ASM, Metals Park, OH, 1984), p. 153.Google Scholar
28Senoo, M. and Hayashi, T.JSME Int. J. 31, 664 (1988).Google Scholar
29Chiou, C.Herman, H. and Fine, M. E.Trans. Metall. Soc. AIM E218, 299 (1960).Google Scholar
30Fouquet, F.Merle, P.Kohen, M.Merlin, J. and Gobin, P. F.Metall. 27, 315 (1979).Google Scholar
31Fiore, N.F. and Gupta, S.K.Metall. Trans. 2, 1065 (1971).CrossRefGoogle Scholar
32Cui, P. and Ke, T. S.J. de Phys. 12, Supp. C8, 417 (1987).Google Scholar
33Gault, C.Dauger, A. and Boch, P.Phys. Status Solidi 31, 179 (1975).CrossRefGoogle Scholar
34Gault, C.Dauger, A. and Boch, P.Phys. Status Solidi 43, 625 (1977).CrossRefGoogle Scholar
35Gault, C.Dauger, A. and Boch, P.Acta Metall. 28, 51 (1980).CrossRefGoogle Scholar
36Rokhlin, L. L. and Bochvar, N. R. in Structure and Properties of Light Alloys, edited by Korol'kov, A. M. (Amerind, New Delhi, India, 1980), p. 75.Google Scholar
37Siebke, W. and Friedrich, C.Z. Metallk. 71, 770 (1980).Google Scholar
38Merz, W. and Gerold, V.Z. Metallk. 57, 607 (1966).Google Scholar
39Rosen, M.Horowitz, E.Fick, S.Reno, R. C. and Mehrabian, R.Mater. Sci. Eng. 53, 163 (1982).Google Scholar
40Fujikawa, S.Hirano, K. and Fukushima, Y.Metall. Trans. A 9A, 1811 (1978).Google Scholar
41Gurp, G.J. van, J. Appl. Phys. 44, 2040 (1973).Google Scholar
42McCaldin, J. O. and Sankur, H.Appl. Phys. Lett. 19, 524 (1971).CrossRefGoogle Scholar
43Kunkle, D.E. and Willey, L.A.J. Mater. 1, 226 (1966).Google Scholar