Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T03:34:50.504Z Has data issue: false hasContentIssue false

TaS2 nanoplatelets produced by laser ablation

Published online by Cambridge University Press:  01 May 2006

Ka Yee Chick
Affiliation:
The Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
Manashi Nath
Affiliation:
The Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
B.A. Parkinson*
Affiliation:
The Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Tantalum disulfide (TaS2) nanoplatelets were produced by laser ablation of a TaS2 target under an argon atmosphere. The nanoplatelet dimensions and morphology were characterized by transmission electron microscopy and x-ray diffraction. The effect of the ablation laser power density on the size distribution of the nanoplatelets was studied. The TaS2 nanoplatelets were prone to oxidation upon exposure to air but could be stabilized by using 3-mercaptopropionic acid as the capping agent.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yoffe, A.D., Wilson, J.A.: The transition metal dichalcogenides: Discussion and interpretation of observed optical, electrical and structural properties. Adv. Phys. 18, 193 (1968).Google Scholar
2.Tenne, R., Margulis, L., Genut, M., Hodes, G.: Polyhedral and cylindrical structures of tungsten disulfide. Nature 360, 444 (1992).CrossRefGoogle Scholar
3.Tenne, R., Homyonfer, M., Feldman, Y.: Nanoparticles of layered compounds with hollow cage structures (inorganic fullerene-like structures). Chem. Mater. 10, 3225 (1998).CrossRefGoogle Scholar
4.Rao, C.N.R., Nath, M.: Inorganic nanotubes. Dalton Trans. 1, 1 (2003).CrossRefGoogle Scholar
5.Li, Q., Walter, E.C., van der Veer, W.E., Murray, B.J., Newberg, J.T., Bohannan, E.W., Switzer, J.A., Hemminger, J.C., Penner, R.M.: Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis. J. Phys. Chem. B 109, 3169 (2005).CrossRefGoogle ScholarPubMed
6.Carlsson, A., Brorson, M., Topsoe, H.: Morphology of WS2 nanoclusters in WS2/C hydrodesulfurization catalysts revealed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging. J. Catal. 227, 530 (2004).CrossRefGoogle Scholar
7.Kulikov, L.M., Semenov-Kobzar, A.A., Grinkevich, K.E., Kossko, I.A., Aksel’rud, L.G., Romaka, L.P.: Dispersion of transition-metal dischalcogenides and their intercalation compounds. Inorg. Chem. 33, 1008 (1997).Google Scholar
8.Remskar, M., Skraba, Z., Sanjines, R., Levy, F.: MoS2 and WS2 nanotubes alloyed with gold and silver. Surf. Rev. Lett. 6, 1283 (1999).CrossRefGoogle Scholar
9.Rapoport, L., Leshchinsky, Y., Volovik, Y., Lvovsky, M., Nepomnyashchy, O., Fieldman, Y., Popovitz-Biro, R., Tenne, R.: Modification of contact surfaces by fullerene-like solid lubricant nanoparticles. Surf. Coat. Technol. 405, 164 (2003).Google Scholar
10.Zelenski, C.M., Dorhout, P.K.: Template synthesis of near-monodisperse microscale nanofibers and nanotubules of MoS2. J. Am. Chem. Soc. 120, 734 (1998).CrossRefGoogle Scholar
11.Qiu, L., Pol, V.G., Wei, Y., Gedanken, A.: A two-step process for the synthesis of MoTe2 nanotubes: Combing a sonochemical technique with heat treatment. J. Mater. Chem. 13, 2985 (2003).CrossRefGoogle Scholar
12.Schuffenhauer, C., Parkinson, B., Jin-Phillipp, N.Y., Joly-Porttuz, L., Martin, J., Popovitz-Biro, R., Tenne, R.: Synthesis of fullerene-like tantalum disulfide nanoparticles by a gas-phase reaction and laser ablation. Small 1(11), 1100 (2005).CrossRefGoogle ScholarPubMed
13.Jose-Yacaman, M., Lopez, H., Santiago, P., Galvan, D.H., Garzon, I.L., Reyes, A.: Studies of MoS2 structures produced by electron irradiation. Appl. Phys. Lett. 69, 1065 (1996).CrossRefGoogle Scholar
14.Parilla, P.A., Dillon, A.C., Jones, K.M., Riker, G., Schulz, D.L., Ginley, D.S., Heben, M.J.: The first true inorganic fullerene? Nature 397, 6715 (1999).CrossRefGoogle Scholar
15.Sen, R., Govindaraj, A., Suenaga, K., Suzuki, S., Kataura, H., Iijima, S., Achiba, Y.: Encapsulated and hollow closed-cage structures of WS2 and MoS2 prepared by laser ablation at 450–1050°C. Chem. Phys. Lett. 340, 242 (2001).CrossRefGoogle Scholar
16.Nath, M., Rao, C.N.R., Popovitz-Biro, R., Albu-Yaron, A., Tenne, R.: Nanoparticles produced by laser ablation of HfS3 in liquid medium: Inorganic fullerene-like structures. Chem. Mater. 16, 2238 (2004).CrossRefGoogle Scholar
17.Rosenfeld-Hacohen, Y., Popovitz-Biro, R., Prior, Y., Gemming, S., Seifert, G., Tenne, R.: Synthesis of NiCl2 nanotubes and fullerene-like structures by laser ablation: Theoretical considerations and comparison with MoS2 nanotubes. Phys. Chem. Chem. Phys. 5, 1644 (2003).CrossRefGoogle Scholar
18.Chikan, V., Kelley, D.F.: Size-dependent spectroscopy of MoS2 nanoclusters. J. Phys. Chem. B 106, 3794 (2002).CrossRefGoogle Scholar
19.Yang, S., Kelley, D.F.: The spectroscopy of InSe nanoparticles. J. Phys. Chem. B 109, 12701 (2005).CrossRefGoogle ScholarPubMed
20.Carre, V., Aubriet, F., Scheepers, P.T., Krier, G., Muller, J.F.: Potential of laser ablation and laser desorption mass spectrometry to characterize organic an inorganic environmental pollutants on dust particles. Rapid Commun. Mass Spectrom. 19, 871 (2005).CrossRefGoogle ScholarPubMed
21.Ramana, C.V., Smith, R.J., Hussain, O.M., Massot, M., Julien, C.M.: Surface analysis of pulsed laser-deposited V2O5 thick films and their lithium intercalated products studied by Raman spectroscopy. Surf. Interface Anal. 37, 406 (2005).CrossRefGoogle Scholar
22.Kroto, H.W., Heath, J.R., O'Brein, S.C., Smalley, R.E.: C60: buckminsterfullerene. Nature 318, 162 (1985).CrossRefGoogle Scholar
23.Parilla, P.A., Dillon, A.C., Parkinson, B.A., Jones, K.M., Alleman, J., Riker, G., Ginley, D.S., Heben, M.J.: Formation of nanooctahedra in molybdenum disulfide and molybdenum diselenide using pulsed laser vaporization. J. Phys. Chem. B 108, 6197 (2004).CrossRefGoogle ScholarPubMed
24. Orthrhombic TaS2, a = 5.7500 Å, b = 3.30800 Å, c = 23.76000 Å (Powder Diffraction Files-2, Vol. 47, issue 6A, June 97, card number 83-48) Hexagonal (Rh) TaS2, a = 3.3400 Å, b = 3.3400 Å, c = 35.9400 Å (Powder Diffraction Files-2, Vol. 97, issue 6A, June 97, card number 85-48).Google Scholar
25.Chaki, N.K., Vijaymohanan, K.P.: Temperature-induced phase transitions of the ordered superlattice assembly of Au nanoclusters. J. Phys. Chem. B 109, 2552 (2005).CrossRefGoogle ScholarPubMed
26.Peng, Z., Walther, T., Kleinermanns, K.: Influence of intense pulsed laser irradiation on optical and morphological properties of gold nanoparticle aggregates produced by surface acid-base reactions. Langmuir 21, 4249 (2005).CrossRefGoogle ScholarPubMed