Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T12:09:19.444Z Has data issue: false hasContentIssue false

A systematic investigation on physical properties of spray pyrolysis–fabricated CdS thin films for opto-nonlinear applications: An effect of Na doping

Published online by Cambridge University Press:  10 February 2020

M. Aslam Manthrammel
Affiliation:
Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia; and Advanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
Mohd. Shkir*
Affiliation:
Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia; and Advanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
S. Shafik
Affiliation:
Thin Film Physics Laboratory, Department of Physics, Electronics and Photonics, Rajarshi Shahu Mahavidyalaya, Latur, Maharashtra 413512, India
Mohd. Anis
Affiliation:
Department of Physics and Electronics, Maulana Azad College of Arts, Science and Commerce, Aurangabad,, Maharashtra 431001, India
S. AlFaify*
Affiliation:
Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia; and Advanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

The present work investigates the influence of sodium doping on structural, morphological, photoluminescence, linear, nonlinear (NL), and optical limiting (OL) parameters of NaxCd1−xS thin films (where x= 0.0, 0.5, 1.0, 2.5, and 5.0 wt%) deposited on glass substrates using spray pyrolysis route. X-ray diffraction and Raman analyses confirmed the hexagonal polycrystalline nature of films. Crystallite sizes were decreased from 30 to 17 nm with doping. Scanning electron microscopy (SEM) micrographs also confirmed the nanocrystalline spherical growth. Energy dispersive X-ray spectroscopy (EDS) and SEM mapping studies revealed the presence and homogeneous distribution of individual elements. Transmission of films is found to lie between 45 and 60%. Although the low doping caused the reduction of the effective band gap, higher doping caused a blue shift in band gap, with an associated reduction in crystallite sizes. The refractive index values are found within 1–2 in visible and their maximum values (in range 2.65–3.16) are observed at 2500 nm. Photoluminescence (PL) spectra showed broad emission peak at 520 ± 10 nm. Dielectric and NL analyses were also carried out. OL results were promising for the systematic gradual decrease of intensity from 100 to 72%, with doping for power regulating applications.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Islam, M.A., Hossain, M.S., Aliyu, M.M., Chelvanathan, P., Huda, Q., Karim, M.R., Sopian, K., and Amin, N.: Comparison of structural and optical properties of CdS thin films grown by CSVT, CBD and sputtering techniques. Energy Procedia 33, 203 (2013).CrossRefGoogle Scholar
Tanushevski, A. and Osmani, H.: CdS thin films obtained by chemical bath deposition in presence of fluorine and the effect of annealing on their properties. Chalcogenide Lett. 15, 107 (2018).Google Scholar
Moualkia, H., Attaf, N., Hadjeris, L., Herissi, L., and Abdelmalek, N.: Preparation and Characterization of CdS Thin Films (IEEE, Piscataway, New Jersey, US, 2012); p. 66.Google Scholar
Ouafi, M., Jaber, B., Atourki, L., Zayyoun, N., Ihlal, A., Mzerd, A., and Laânab, L.: In situ low-temperature chemical bath deposition of CdS thin films without thickness limitation: Structural and optical properties. Int. J. Photoenergy 2018, 1 (2018).CrossRefGoogle Scholar
Göde, F. and Ünlü, S.: Synthesis and characterization of CdS window layers for PbS thin film solar cells. Mater. Sci. Semicond. Process. 90, 92 (2019).CrossRefGoogle Scholar
Jie, J., Zhang, W., Jiang, Y., Meng, X., Li, Y., and Lee, S.: Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett. 6, 1887 (2006).CrossRefGoogle ScholarPubMed
Wondmagegn, W., Mejia, I., Salas-Villasenor, A., Stiegler, H., Quevedo-Lopez, M., Pieper, R., and Gnade, B.: CdS thin film transistor for inverter and operational amplifier circuit applications. Microelectron. Eng. 157, 64 (2016).CrossRefGoogle Scholar
Song, Y.L., Li, Y., Zhou, F.Q., Ji, P.F., Sun, X.J., Wan, M.L., and Tian, M.L.: White electroluminescence from a prototypical light-emitting diode based on CdS/Si heterojunctions. Mater. Lett. 196, 8 (2017).CrossRefGoogle Scholar
An, B-G., Chang, Y.W., Kim, H-R., Lee, G., Kang, M-J., Park, J-K., and Pyun, J-C.: Highly sensitive photosensor based on in situ synthesized CdS nanowires. Sens. Actuators, B 221, 884 (2015).CrossRefGoogle Scholar
Zhao, Y., Yuan, M., Chen, Y., Huang, Y., Lian, J., Cao, S., Li, H., and Wu, L.: Size controllable preparation of sphere-based monolayer CdS thin films for white-light photodetectors. Ceram. Int. 44, 2407 (2018).CrossRefGoogle Scholar
Khimani, A.J., Chaki, S.H., Malek, T.J., Tailor, J.P., Chauhan, S.M., and Deshpande, M.P.: Cadmium sulphide (CdS) thin films deposited by chemical bath deposition (CBD) and dip coating techniques—A comparative study. Mater. Res. Express 5, 036406 (2018).CrossRefGoogle Scholar
Yılmaz, S., Polat, İ., Tomakin, M., Küçükömeroğlu, T., Töreli, S.B., and Bacaksız, E.: Sm-doped CdS thin films prepared by spray pyrolysis: A structural, optical, and electrical examination. Appl. Phys. A 124, 502 (2018).CrossRefGoogle Scholar
Shkir, M., Anis, M., Shaikh, S.S., and AlFaify, S.: An investigation on structural, morphological, optical and third order nonlinear properties of facilely spray pyrolysis fabricated In:CdS thin films. Superlattices Microstruct. 133, 106202 (2019).CrossRefGoogle Scholar
Shkir, M., Shaikh, S., and AlFaify, S.: An investigation on optical-nonlinear and optical limiting properties of CdS: An effect of Te doping concentrations for optoelectronic applications. J. Mater. Sci.: Mater. Electron. 30, 17469 (2019).Google Scholar
Shkir, M., Ashraf, I.M., AlFaify, S., El-Toni, A.M., Ahmed, M., and Khan, A.: A noticeable effect of Pr doping on key optoelectrical properties of CdS thin films prepared using spray pyrolysis technique for high-performance photodetector applications. Ceram. Int. 46, 4652 (2019).CrossRefGoogle Scholar
Shkir, M., Ashraf, I.M., Chandekar, K.V., Yahia, I.S., Khan, A., Algarni, H., and AlFaify, S.: A significant enhancement in visible-light photodetection properties of chemical spray pyrolysis fabricated CdS thin films by novel Eu doping concentrations. Sens. Actuators, A 301, 111749 (2020).CrossRefGoogle Scholar
Shkir, M., Khan, Z.R., Anis, M., Shaikh, S.S., and AlFaify, S.: A comprehensive study of opto-electrical and nonlinear properties of Cu@CdS thin films for optoelectronics. Chin. J. Phys. 63, 51 (2020).CrossRefGoogle Scholar
Pandey, G., Dixit, S., and Shrivastava, A.K.: Effect of Gd3+ doping and reaction temperature on structural and optical properties of CdS nanoparticles. Mater. Sci. Eng. B 200, 59 (2015).CrossRefGoogle Scholar
Agrawal, S. and Khare, A.: Effect of La on optical and structural properties of CdS–Se films. Arabian J. Chem. 8, 450 (2015).CrossRefGoogle Scholar
Khalid, M.A. and Jassem, H.A.: Electrical and optical properties of polycrystalline Ag-doped CdS thin films. Acta Phys. Hung. 73, 29 (1993).Google Scholar
Dávila-Pintle, J.A., Lozada-Morales, R., Palomino-Merino, M.R., Rivera-Márquez, J.A., Portillo-Moreno, O., and Zelaya-Angel, O.: Electrical properties of Er-doped CdS thin films. J. Appl. Phys. 101, 013712 (2007).CrossRefGoogle Scholar
Karimi, L., Yazdanshenas, M.E., Khajavi, R., Rashidi, A., and Mirjalili, M.: Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose 21, 3813 (2014).CrossRefGoogle Scholar
Sreenivas, M., Harish, G.S., and Reddy, P.S.: Synthesis and Raman studies of Ce doped Cds nanoparticles. Int. J. Adv. Res. 2, 468 (2014).Google Scholar
Mageswari, S., Dhivya, L., Palanivel, B., and Murugan, R.: Structural, morphological and optical properties of Na and K dual doped CdS thin film. J. Alloys Compd. 545, 41 (2012).CrossRefGoogle Scholar
Iqbal Khan, M.J. and Kanwal, Z.: Investigation of optical properties of CdS for various Na concentrations for nonlinear optical applications (A DFT study). Optik 193, 162985 (2019).CrossRefGoogle Scholar
Shkir, M. and AlFaify, S.: Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Rep. 7, 16091 (2017).CrossRefGoogle ScholarPubMed
Manthrammel, M.A., Fatehmulla, A., Al-Dhafiri, A.M., Alshammari, A.S., and Khan, A.: Temperature dependent surface and spectral modifications of nano V2O5 films. Opt. Spectrosc. 122, 420 (2017).CrossRefGoogle Scholar
Shkir, M., Arif, M., Ganesh, V., Manthrammel, M.A., Singh, A., Maidur, S.R., Patil, P.S., Yahia, I.S., Algarni, H., and AlFaify, S.: Linear, third order nonlinear and optical limiting studies on MZO/FTO thin film system fabricated by spin coating technique for electro-optic applications. J. Mater. Res. 33, 3880 (2018).CrossRefGoogle Scholar
Manthrammel, M.A., Ganesh, V., Shkir, M., Yahia, I.S., and Alfaify, S.: Facile synthesis of La-doped CdS nanoparticles by microwave assisted co-precipitation technique for optoelectronic application. Mater. Res. Express 6, 025022 (2018).CrossRefGoogle Scholar
Shkir, M., Yahia, I.S., Kilany, M., Abutalib, M.M., AlFaify, S., and Darwish, R.: Facile nanorods synthesis of KI:HAp and their structure-morphology, vibrational and bioactivity analyses for biomedical applications. Ceram. Int. 45, 50 (2019).CrossRefGoogle Scholar
Ganesh, V., Yahia, I., AlFaify, S., and Shkir, M.: Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications. J. Phys. Chem. Solids 100, 115 (2017).CrossRefGoogle Scholar
Gilic, M., Trajic, J., Romcevic, N., Romcevic, M., Timotijevic, D.V., Stanisic, G., and Yahia, I.S.: Optical properties of CdS thin films. Opt. Mater. 35, 1112 (2013).CrossRefGoogle Scholar
Malashchonak, M.V., Mazanik, A.V., Korolik, O.V., Streltsov, E.A., and Kulak, A.I.: Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method. Beilstein J. Nanotechnol. 6, 2252 (2015).CrossRefGoogle ScholarPubMed
Dzhagan, V.M., Valakh, M.Y., Himcinschi, C., Milekhin, A.G., Solonenko, D., Yeryukov, N.A., Raevskaya, O.E., Stroyuk, O.L., and Zahn, D.R.T.: Raman and infrared phonon spectra of ultrasmall colloidal CdS nanoparticles. J. Phys. Chem. 118, 19492 (2014).Google Scholar
Nusimovici, M.A., Balkanski, M., and Birman, J.L.: Lattice dynamics of wurtzite: CdS. II. Phys. Rev. B 1, 595 (1970).CrossRefGoogle Scholar
Shkir, M. and AlFaify, S.: Effect of Gd3+ doping on structural, morphological, optical, dielectric, and nonlinear optical properties of high-quality PbI2 thin films for optoelectronic applications. J. Mater. Res. 34, 2765 (2019).CrossRefGoogle Scholar
Shkir, M., Khan, A., El-Toni, A.M., Aldalbahi, A., Yahia, I.S., and AlFaify, S.: Structural, morphological, opto-nonlinear-limiting studies on Dy:PbI2/FTO thin films derived facilely by spin coating technique for optoelectronic technology. J. Phys. Chem. Solids 130, 189 (2019).CrossRefGoogle Scholar
Aziz, S.B., Hassan, A.Q., Mohammed, S.J., Karim, W.O., Kadir, M., Tajuddin, H., and Chan, N.: Structural and optical characteristics of PVA: C-dot composites: Tuning the absorption of ultra violet (UV) region. Nanomaterials 9, 216 (2019).CrossRefGoogle ScholarPubMed
Aziz, S.B., Marif, R.B., Brza, M., Hassan, A.N., Ahmad, H.A., Faidhalla, Y.A., and Kadir, M.: Structural, thermal, morphological and optical properties of PEO filled with biosynthesized Ag nanoparticles: New insights to band gap study. Results Phys. 13, 102220 (2019).CrossRefGoogle Scholar
Aziz, S.B., Mamand, S.M., Saed, S.R., Abdullah, R.M., and Hussein, S.A.: New method for the development of plasmonic metal-semiconductor interface layer: Polymer composites with reduced energy band gap. J. Nanomater. 2017, 1 (2017).CrossRefGoogle Scholar
Abdullah, R.M., Aziz, S.B., Mamand, S.M., Hassan, A.Q., Hussein, S.A., and Kadir, M.: Reducing the crystallite size of spherulites in PEO-based polymer nanocomposites mediated by carbon nanodots and Ag nanoparticles. Nanomaterials 9, 874 (2019).CrossRefGoogle ScholarPubMed
Aziz, S.B., Ahmed, H.M., Hussein, A.M., Fathulla, A.B., Wsw, R.M., and Hussein, R.T.: Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites. J. Mater. Sci.: Mater. Electron. 26, 8022 (2015).Google Scholar
Aziz, S., Rasheed, M., and Ahmed, H.: Synthesis of polymer nanocomposites based on [methyl cellulose](1−x):(CuS)x (0.02 M ≤ x ≤ 0.08 M) with desired optical band gaps. Polymers 9, 194 (2017).CrossRefGoogle Scholar
Brza, M., Aziz, S.B., Anuar, H., and Al Hazza, M.H.F.: From green remediation to polymer hybrid fabrication with improved optical band gaps. Int. J. Mol. Sci. 20, 3910 (2019).CrossRefGoogle ScholarPubMed
Viezbicke, B.D., Patel, S., Davis, B.E., and Birnie, D.P.: Evaluation of the tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B 252, 1700 (2015).CrossRefGoogle Scholar
Bedia, A., Bedia, F.Z., Aillerie, M., Maloufi, N., and Benyoucef, B.: Influence of the thickness on optical properties of sprayed ZnO hole-blocking layers dedicated to inverted organic solar cells. Energy Procedia 50, 603 (2014).CrossRefGoogle Scholar
Lv, J., Huang, K., Chen, X., Zhu, J., Cao, C., Song, X., and Sun, Z.: Optical constants of Na-doped ZnO thin films by sol–gel method. Opt. Commun. 284, 2905 (2011).CrossRefGoogle Scholar
Polat, İ.: Effects of Na-doping on the efficiency of ZnO nanorods-based dye sensitized solar cells. J. Mater. Sci.: Mater. Electron. 25, 3721 (2014).Google Scholar
Aslam, M.M., Ali, S.M., Fatehmulla, A., Farooq, W.A., Atif, M., Al-Dhafiri, A.M., and Shar, M.A.: Growth and characterization of layer by layer CdS–ZnS QDs on dandelion like TiO2 microspheres for QDSSC application. Mater. Sci. Semicond. Process. 36, 57 (2015).CrossRefGoogle Scholar
Hankare, P.P., Chate, P.A., and Sathe, D.J.: CdS thin film: Synthesis and characterization. Solid State Sci. 11, 1226 (2009).CrossRefGoogle Scholar
Yılmaz, S., Polat, İ., Tomakin, M., and Bacaksız, E.: A research on growth and characterization of CdS:Eu thin films. Appl. Phys. A 125, 67 (2019).CrossRefGoogle Scholar
Yılmaz, S., Polat, İ., Tomakin, M., and Bacaksız, E.: Determination of optimum Er-doping level to get high transparent and low resistive Cd1−xErxS thin films. J. Mater. Sci.: Mater. Electron. 30, 5662 (2019).Google Scholar
Yılmaz, S., Atasoy, Y., Tomakin, M., and Bacaksız, E.: Comparative studies of CdS, CdS:Al, CdS:Na, and CdS:(Al–Na) thin films prepared by spray pyrolysis. Superlattices Microstruct. 88, 299 (2015).CrossRefGoogle Scholar
Kumar, R., Das, R., Gupta, M., and Ganesan, V.: Compositional effect of antimony on structural, optical, and photoluminescence properties of chemically deposited (Cd1−xSbx)S thin films. Superlattices Microstruct. 59, 29 (2013).CrossRefGoogle Scholar
Ikhmayies, S.J. and Ahmad-Bitar, R.N.: Dependence of the photoluminescence of CdS:In thin films on the excitation power of the laser. J. Lumin. 149, 240 (2014).CrossRefGoogle Scholar
Murali, G., Amaranatha Reddy, D., Giribabu, G., Vijayalakshmi, R.P., and Venugopal, R.: Room temperature ferromagnetism in Mn doped CdS nanowires. J. Alloys Compd. 581, 849 (2013).CrossRefGoogle Scholar
Aslam Manthrammel, M., Aboraia, A.M., Shkir, M., Yahia, I.S., Assiri, M.A., Zahran, H.Y., Ganesh, V., AlFaify, S., and Soldatov, A.V.: Optical analysis of nanostructured rose bengal thin films using Kramers–Kronig approach: New trend in laser power attenuation. Opt. Laser Technol. 112, 207 (2019).CrossRefGoogle Scholar
Aziz, S.B., Rasheed, M.A., Hussein, A.M., and Ahmed, H.M.: Fabrication of polymer blend composites based on [PVA-PVP](1−x):(Ag2S)x (0.01 ≤ x ≤ 0.03) with small optical band gaps: Structural and optical properties. Mater. Sci. Semicond. Process. 71, 197 (2017).CrossRefGoogle Scholar
Aziz, S.: Morphological and optical characteristics of chitosan(1−x):Cuox (4 ≤ x ≤ 12) based polymer nano-composites: Optical dielectric loss as an alternative method for tauc's model. Nanomaterials 7, 444 (2017).CrossRefGoogle Scholar
Ojha, K.S. and Srivastava, R.L.: Dielectric and impedance study of optimized cadmium sulphide thin film. Chalcogenide Lett. 10, 1 (2013).Google Scholar
Assiri, M.A., Aslam Manthrammel, M., Aboraia, A.M., Yahia, I.S., Zahran, H.Y., Ganesh, V., Shkir, M., AlFaify, S., and Soldatov, A.V.: Kramers–Kronig calculations for linear and nonlinear optics of nanostructured methyl violet (CI-42535): New trend in laser power attenuation using dyes. Phys. B Condens. Matter 552, 62 (2019).CrossRefGoogle Scholar
Bolarinwa, H.S., Onuu, M.U., Fasasi, A.Y., Alayande, S.O., Animasahun, L.O., Abdulsalami, I.O., Fadodun, O.G., and Egunjobi, I.A.: Determination of optical parameters of zinc oxide nanofibre deposited by electrospinning technique. Journal of Taibah University for Science 11, 1245 (2017).CrossRefGoogle Scholar
El-Desoky, M.M., El-Barbary, G.A., El Refaey, D.E., and El-Tantawy, F.: Optical constants and dispersion parameters of La-doped ZnS nanocrystalline films prepared by sol–gel technique. Optik 168, 764 (2018).CrossRefGoogle Scholar
Frumar, M., Jedelský, J., Frumarova, B., Wagner, T., and Hrdlička, M.: Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non-Cryst. Solids 326, 399 (2003).CrossRefGoogle Scholar
Ticha, H. and Tichy, L.: Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381 (2002).Google Scholar
Wang, C.C.: Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2, 2045 (1970).CrossRefGoogle Scholar
Wynne, J.: Nonlinear optical spectroscopy of χ3 in LiNbO3. Phys. Rev. Lett. 29, 650 (1972).CrossRefGoogle Scholar
Ganesh, V., Shkir, M., AlFaify, S., Yahia, I., Zahran, H., and El-Rehim, A.A.: Study on structural, linear and nonlinear optical properties of spin coated N doped CdO thin films for optoelectronic applications. J. Mol. Struct. 1150, 523 (2017).CrossRefGoogle Scholar
Hanna, D.: Handbook of Laser Science and Technology, 35, 12 (Journal of Modern Optics, 1988).Google Scholar
Tutt, L.W. and Kost, A.: Optical limiting performance of C60 and C70 solutions. Nature 356, 225 (1992).CrossRefGoogle Scholar
Wood, G.L., Clark, W.W., Miller, M.J., Salamo, G.J., and Sharp, E.J.: Evaluation of passive optical limiters and switches. In Materials for Optical Switches, Isolators, and Limiters, vol. 1105 (International Society for Optics and Photonics, 1989); p. 154. https://doi.org/10.1117/12.960622 Event: SPIE 1989 Technical Symposium on Aerospace Sensing, 1989, Orlando, FL, USA.CrossRefGoogle Scholar
Holmen, L.G. and Haakestad, M.W.: Optical limiting properties and z-scan measurements of carbon disulfide at 2.05 μm wavelength. J. Opt. Soc. Am. B 33, 1655 (2016).CrossRefGoogle Scholar
Poornesh, P., Hegde, P.K., Umesh, G., Manjunatha, M., Manjunatha, K., and Adhikari, A.: Nonlinear optical and optical power limiting studies on a new thiophene-based conjugated polymer in solution and solid PMMA matrix. Opt. Laser Technol. 42, 230 (2010).CrossRefGoogle Scholar
Khan, Z.R., Shkir, M., Ganesh, V., AlFaify, S., Yahia, I.S., and Zahran, H.Y.: Linear and nonlinear optics of CBD grown nanocrystalline F doped CdS thin films for optoelectronic applications: An effect of thickness. J. Electron. Mater. 47, 5386 (2018).CrossRefGoogle Scholar
Shkir, M., Arif, M., Ganesh, V., Manthrammel, M.A., Singh, A., Yahia, I.S., Maidur, S.R., Patil, P.S., and AlFaify, S.: Investigation on structural, linear, nonlinear and optical limiting properties of sol–gel derived nanocrystalline Mg doped ZnO thin films for optoelectronic applications. J. Mol. Struct. 1173, 375 (2018).CrossRefGoogle Scholar
Khan, Z.R., Shkir, M., Alshammari, A.S., Ganesh, V., AlFaify, S., and Gandouzi, M.: Structural, linear and third order nonlinear optical properties of sol–gel grown Ag–CdS nanocrystalline thin films. J. Electron. Mater. 48, 1122 (2019).CrossRefGoogle Scholar
El Radaf, I., Hameed, T.A., and Yahia, I.: Synthesis and characterization of F-doped CdS thin films by spray pyrolysis for photovoltaic applications. Mater. Res. Express 5, 066416 (2018).CrossRefGoogle Scholar
Arif, M., Shkir, M., AlFaify, S., Sanger, A., Vilarinho, P.M., and Singh, A.: Linear and nonlinear optical investigations of N:ZnO/ITO thin films system for opto-electronic functions. Opt. Laser Technol. 112, 539 (2019).CrossRefGoogle Scholar
Abrinaei, F. and Shirazi, M.: Nonlinear optical investigations on Al doping ratio in ZnO thin film under pulsed Nd:YAG laser irradiation. J. Mater. Sci.: Mater. Electron. 28, 17541 (2017).Google Scholar
Supplementary material: File

Manthrammel et al. supplementary material

Manthrammel et al. supplementary material

Download Manthrammel et al. supplementary material(File)
File 288.2 KB