Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T01:21:03.787Z Has data issue: false hasContentIssue false

Synthetic diamond crystal strength enhancement through annealing at 50 kbar and 1500 °C

Published online by Cambridge University Press:  03 March 2011

Steven W. Webb
Affiliation:
GE Superabrasives, 6325 Huntley Road, Worthington. Ohio 43085
W.E. Jackson
Affiliation:
GE Superabrasives, 6325 Huntley Road, Worthington. Ohio 43085
Get access

Abstract

High-pressure, high temperature (HPHT) annealing of synthetic type I diamond crystals at 1200–1700 °C and 50–60 kbar was found to induce aggregate-nitrogen dissociation and metal coalescence as well as heal diamond lattice dislocations. For crystals with low levels of metal inclusions, HPHT annealing was observed to increase the average compressive fracture strength of the crystals by apparently strengthening the strongest crystals of the population. Crystals with high metal-content, or otherwise of low quality, are weakened by anncaling. Strengthening is believed to occur by locally stabilizing the diamond lattice by healing lattice dislocations as well as dispersing nitrogen within the lattice. A general model is presented that ties together these results with those of other researchers.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Davies, G., Lawson, S. C., Collins, A. T., Mainwood, A., and Sharp, S.J., Phys. Rev. B 46, 13151317 (1992).Google Scholar
2Belling, N. G. and Dyer, D. B., Industrial Diamond Buyers Guide (Industrial Diamond Information Bureau, Charters, UK, 1964).Google Scholar
3Belling, N. G. and Bailey, L., Industrial Diamond Buyers Guide (Industrial Diamond Information Bureau, Charters, UK, 1974).Google Scholar
4Kanda, H., Ohsawa, T., and Yamaoka, S., Proc. 1st Int. Conf. on New Diamond Science and Technology, Tokyo, Japan (Terra Scientific Publishing, Tokyo, Japan, 1990), pp. 339344.Google Scholar
5Evans, T. and Wild, R. K., Philos. Mag. 12, 479 (1965).CrossRefGoogle Scholar
6Brozel, M. R., Evans, T., and Stephenson, R.F., Proc. R. Soc. London, A 361, 109127 (1978).Google Scholar
7Chrenko, R. M., Tuft, R. E., and Strong, H.M., Nature (London) 270, 141144 (1977).CrossRefGoogle Scholar
8Belimenko, L. D., Klyuev, Y. A., Laptev, V. A., Naletov, A. M., Nepsha, V. I., and Samoilovich, M. I., Sov. Phys. Dokl. 26(8), 722724 (1981).Google Scholar
9Klyuev, Y. A., Russia J. Phys. Chem. 56(3), 323 (1982).Google Scholar
10Kanda, H. and Yamaoka, S., Diamond Relat. Mater. 2, 14201423 (1993).CrossRefGoogle Scholar
11Brookes, C. A., Howes, V. R., and Parry, A. R., Nature (London) 332(10), 139141 (1988).CrossRefGoogle Scholar
12DeVries, R.C., Mater. Res. Bull. 10, 11931200 (1975).CrossRefGoogle Scholar
13Dyer, H. B. and Conradi, V. R., Ind. Diamond Review 32, 335340 (1972).Google Scholar
14Mukhin, M. E., Yarmak, M. F., and Popov, V. V., Almazy i Sverkh. Materialy 8, 46 (1974).Google Scholar
15Simkin, E. S., Fiz. Fek. Vysokih Davlenii 8, 4447 (1982).Google Scholar
16Jackson, W. E. and Hayden, S. C., Finer Points 5, 26 (1993).Google Scholar
17Evans, T., Davey, S. T., and Robinson, S.H., J. Mater. Sci. 19, 24052414 (1984).CrossRefGoogle Scholar
18McCormick, T.L., Nemanich, R. J., and Jackson, W.E., in Novel Forms of Carbon II, edited by Renschler, C. L., Cox, D. M., Pouch, J. J., and Achiba, Y. (Mater. Res. Soc. Symp. Proc. 349, Pittsburgh, PA, 1994), pp. 3034.Google Scholar
19McCormick, T.L., M. S. Thesis, North Carolina State University, Raleigh, NC (1994).Google Scholar
20Burns, R. C., Cvetkovic, V., Dodge, C. N., Evans, D. J. F., Rooney, M. T., Spear, P. M., and Welcourn, CM., J. Cryst. Growth 104, 257279 (1990).CrossRefGoogle Scholar
21Field, J. E., The Properties of Natural and Synthetic Diamond (Academic Press, New York, 1992).Google Scholar
22Evans, T., Contemp. Phys. 17, 4570 (1976).CrossRefGoogle Scholar
23Klyuev, Y. A., Nepsha, V. I., and Naletov, A.M., Sov. Phys. Solid State 16, 21182126 (1974).Google Scholar
24Satoh, S., Sumiya, H., Tsuji, K., and Yazu, S., in Science and Technology of New Diamond, edited by Saito, S., Fukunaga, O., and Yoshikawa, M. (KTK, Tokyo, 1990), p. 351.Google Scholar
25Woods, G. S. and Lang, A. R., J. Cryst. Growth 28, 215226 (1975).CrossRefGoogle Scholar
26Wilks, E. M. and Wilks, J., Wear 81, 329346 (1982).CrossRefGoogle Scholar
27Evans, T. and Qi, Z., Proc. R. Soc. London A 381, 159178 (1982).Google Scholar
28Belyankov, A. V., Sin. almazy 3, 2224 (1971).Google Scholar
29Naletov, A. M., Nepsha, V. I., and Zvonkov, S.D., Tr.-Vses. Nauchno-Issled. Konstr.-Tekhnol. Inst. Prir. almazov Instrum. 3, 4550 (1974).Google Scholar
30Vishnevskii, A. S., Bogatyreva, G. P., Nevstraev, G. F., and Sokhina, L. A., Fiz.-Khim. Probl. Sint. Sverkhtverd. Mater. 77–1, 138141 (1978).Google Scholar
31Collins, A. T., J. Phys. Chem. 13, 2641 (1980).Google Scholar
32The Science of Engineering Materials, edited by Goldman, J. E. (John Wiley and Sons, New York, 1957), pp. 267301.Google Scholar
33Noyikov, N. V., Dub, S. N., Mal'nev, V.I., and Beskrovanov, V. V., Diamond Relat. Mater. 3(3), 198204 (1994).CrossRefGoogle Scholar
34Lawson, S. C. and Kanda, H., Diamond Relat. Mater. 2, 130135 (1993).CrossRefGoogle Scholar