Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-06T07:01:38.977Z Has data issue: false hasContentIssue false

Synthesis of water soluble silver-nanoparticle-embedded polymer nanofibers with poly(2-ethyl-2-oxazoline) by a straightforward polyol process

Published online by Cambridge University Press:  21 June 2011

Lin Wei
Affiliation:
State Key Laboratory of Chemo/Biosensing and Chemometrics, Biomedical Engineering Center, Hunan University, Changsha 410082, People’s Republic of China
Lehui Xiao
Affiliation:
State Key Laboratory of Chemo/Biosensing and Chemometrics, Biomedical Engineering Center, Hunan University, Changsha 410082, People’s Republic of China
Yan He*
Affiliation:
State Key Laboratory of Chemo/Biosensing and Chemometrics, Biomedical Engineering Center, Hunan University, Changsha 410082, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this work, poly(2-ethyl-2-oxazoline) (PEtOx) is used for synthesis of silver-nanoparticle-embedded polymer nanofibers through a simple polyol process. The factors, such as AgNO3/PEtOx molar ratio R, reaction temperature T, and reaction time t, which would influence the morphology of the nanofiber were studied extensively. Long linear PEtOx nanofibers with length more than 1 μm were obtained under the optimum conditions of R = 5, T = 150 °C, and t = 1 h. PEtOx and reaction temperature were found to be the key factors affecting the final morphology of nanofibers in this system. The physical and chemical properties of these silver-nanoparticle-embedded PEtOx nanofibers were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectrum, x-ray diffraction, and inductive coupled plasma-mass spectrometry. The growth mechanism of the nanofibers is elucidated, and the process is demonstrated to be both kinetically and thermodynamically controlled.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hao, E., Li, S., Bailey, R.C., Zou, S., Schatz, G.C., and Hupp, J.T.: Optical properties of metal nanoshells. J. Phys. Chem. B 108, 1224 (2004).CrossRefGoogle Scholar
2.Xia, Y.N., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).CrossRefGoogle Scholar
3.Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C.: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003).CrossRefGoogle Scholar
4.Wiley, B.J., Wang, Z.H., Wei, J., Yin, Y.D., Cobden, D.H., and Xia, Y.N.: Synthesis and electrical characterization of silver beams. Nano Lett. 6, 2273 (2006).CrossRefGoogle Scholar
5.Wiley, B.J., Chen, Y., McLellan, J.M., Xiong, Y.J., Li, Z.Y., Ginger, D., and Xia, Y.N.: Synthesis and optical properties of silver nanobars and nanorice. Nano Lett. 7, 1032 (2007).CrossRefGoogle ScholarPubMed
6.Schwartzberg, A.M., Grant, C.D., Wolcott, A., Talley, C.E., Huser, T.R., Bogomolni, R., and Zhang, J.Z.: Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate. J. Phys. Chem. B 108, 19191 (2004).CrossRefGoogle Scholar
7.Zou, X.Q. and Dong, S.J.: Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution. J. Phys. Chem. B 110, 21545 (2006).CrossRefGoogle ScholarPubMed
8.Fang, Y.R., Wei, H., Hao, F., Nordlander, P., and Xu, H.X.: Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons. Nano Lett. 9, 2049 (2009).CrossRefGoogle ScholarPubMed
9.Zhao, J., Das, A., Schatz, G.C., Sligar, S.G., and Van Duyne, R.P.: Resonance localized surface plasmon spectroscopy: Sensing substrate and inhibitor binding to cytochrome P450. J. Phys. Chem. C 112, 13084 (2008).CrossRefGoogle Scholar
10.Haes, A.J. and Van Duyne, R.P.: A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124, 10596 (2002).CrossRefGoogle ScholarPubMed
11.Huang, H.H., Ni, X.P., Loy, G.L., Chew, C.H., Tan, K.L., Loh, F.C., Deng, J.F., and Xu, G.Q.: Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 12, 909 (1996).CrossRefGoogle Scholar
12.Morones, J.R. and Frey, W.: Structural evolution of gold nanorods during controlled secondary growth. Langmuir 23, 8180 (2007).CrossRefGoogle Scholar
13.Cepak, V.M. and Martin, C.R.: Preparation and stability of template-synthesized metal nanorod sols in organic solvents. J. Phys. Chem. B 102, 9985 (1998).CrossRefGoogle Scholar
14.Guo, S.J., Dong, S.J., and Wang, E.: Rectangular silver nanorods: Controlled preparation, liquid-liquid interface assembly, and application in surface-enhanced Raman scattering. Cryst. Growth Des. 9, 372 (2009).CrossRefGoogle Scholar
15.Cui, X.Q., Li, C.M., Bao, H.F., Zheng, X.T., Zang, J.F., Ooi, C.P., and Guo, J.: Hyaluronan-assisted photoreduction synthesis of silver nanostructures: From nanoparticle to nanoplate. J. Phys. Chem. C 112, 10730 (2008).CrossRefGoogle Scholar
16.Zhu, J.F., Kan, C.X., Zhu, X.G., Wan, J.G., Han, M., Zhao, Y., Wang, B.L., and Wang, G.H.: Synthesis of perfect silver nanocubes by a simple polyol process. J. Mater. Res. 22, 1479 (2007).CrossRefGoogle Scholar
17.Yu, D.B. and Yam, V.W.: Controlled synthesis of monodisperse silver nanocubes in water. J. Am. Chem. Soc. 126, 13200 (2004).CrossRefGoogle ScholarPubMed
18.Wiley, B.J., Sun, Y.G., and Xia, Y.N.: Polyol synthesis of silver nanostructures: Control of product morphology with Fe(II) or Fe(III) species. Langmuir 21, 8077 (2005).CrossRefGoogle ScholarPubMed
19.Wang, H.L. and Qi, L.M.: Controlled synthesis of Ag2S, Ag2Se, and Ag nanofibers by using a general sacrificial template and their application in electronic device fabrication. Adv. Funct. Mater. 18, 1249 (2008).CrossRefGoogle Scholar
20.Saquing, C.D., Manasco, J.L., and Khan, S.A.: Electrospun nanoparticle-nanofiber composites via a one-step synthesis. Small 5, 944 (2009).CrossRefGoogle Scholar
21.Sun, Y.G., Yin, Y.D., Mayers, B.T., Herricks, T., and Xia, Y.N.: Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 14, 4736 (2002).CrossRefGoogle Scholar
22.Sun, Y.G., Mayers, B., Herricks, T., and Xia, Y.N.: Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett. 3, 955 (2003).CrossRefGoogle Scholar
23.Behrens, S., Wu, J., Habicht, W., and Unger, E.: Silver nanoparticle and nanowire formation by microtubule templates. Chem. Mater. 16, 3085 (2004).CrossRefGoogle Scholar
24.Korte, K.: Rapid Synthesis of Silver Nanowires (National Nanotechnology Infrastructure Network, Ithaca, NY, 2007), p. 28.Google Scholar
25.Grunlan, J.C., Choi, J.K., and Lin, A.: Antimicrobial behavior of polyelectrolyte multilayer films containing cetrimide and silver. Biomacromolecules 6, 1149 (2005).CrossRefGoogle ScholarPubMed
26.Kong, H. and Jang, J.: Antibacterial properties of novel poly(methy methacrylate) nanofiber containing silver nanoparticles. Langmuir 24, 2051 (2008).CrossRefGoogle Scholar
27.Drury, A., Chaure, S., Kroll, M., Nicolosi, V., Chaure, N., and Blau, W.J.: Fabrication and characterization of silver/polyaniline composite nanowires in porous anodic alumina. Chem. Mater. 19, 4252 (2007).CrossRefGoogle Scholar
28.Chen, J.L., Li, J., Liu, Q.Y., Huang, X.M., and Shen, W.J.: Facile synthesis of Ag-hollandite nanofibers and their catalytic activity for ethanol selective oxidation. Chin. J. Catal. 28, 1034 (2007).CrossRefGoogle Scholar
29.Li, W., Hoa, N.D., Cho, Y., Kim, D., and Kim, J.S.: Nanofibers of conducting polyaniline for aromatic organic compound sensor. Sens. Actuators, B 143, 132 (2009).CrossRefGoogle Scholar
30.Kong, H. and Jang, J.: Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules 9, 2677 (2008).CrossRefGoogle ScholarPubMed
31.Sondi, I. and Salopek-Sondi, B.: Silver nanoparticles as antimicrobial agent: A case study on E.coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275, 177 (2004).CrossRefGoogle Scholar
32.Zhang, Y., Grass, M.E., Kuhn, J.N., Tao, F., Habas, S.E., Huang, W., Yang, P., and Somorjai, G.A.: Highly selective synthesis of catalytically active monodisperse rhodium nanocubes. J. Am. Chem. Soc. 130, 5868 (2008).CrossRefGoogle ScholarPubMed
33.Hoefelmeyer, J.D., Niesz, K., Somorjai, G.A., and Tilley, T.D.: Radial anisotropic growth of rhodium nanoparticles. Nano Lett. 5, 435 (2005).CrossRefGoogle ScholarPubMed
34.Pierre-Yves, S., Rondaldo, U.H., Nicolas, D., Venugopal, V., and Kamar Tekaia, E.: Preparation of colloidal silver dispersions by the polyol process Part 1. Synthesis and characterization. J. Mater. Chem. 6, 573 (1996).Google Scholar
35.Pierre-Yves, S., Rondaldo, U.H., Nicolas, D., Venugopal, V., and Kamar Tekaia, E.: Preparation of colloidal silver dispersions by the polyol process: Part 2. Mechanism of particle formation. J. Mater. Chem. 7, 293 (1997).Google Scholar
36.Mayer, A.B.R. and Mark, J.E.: Silver nanoparticles in polymer electrolyte membranes for olefin/paraffin separation. PMSE Prepr. 73, 220 (1995).Google Scholar
37.Mayer, A.B.R.: Colloidal metal nanoparticles dispersed in amphiphilic polymers. Polym. Adv. Technol. 12, 96 (2001).3.0.CO;2-G>CrossRefGoogle Scholar
38.Mayer, A.B.R., Johnson, R.W., Hausner, S.H., and Mark, J.E.: Colloidal silver nanoparticles protected by water-soluble nonionic polymers and “soft” polyacids. J. Macromol. Sci. Part A Pure Appl. Chem. 36, 1427 (1999).CrossRefGoogle Scholar
39.Kim, J.H., Wong, J., and Kang, Y.S.: Olefin-induced dissolution of silver salts physically dispersed in inert polymers and their application to olefin/paraffin separation. J. Membr. Sci. 241, 403 (2004).CrossRefGoogle Scholar
40.Adams, N. and Schubert, U.S.: Poly(2-oxazolines) in biological and biomedical application contexts. Adv. Drug Delivery Rev. 59, 1504 (2007).CrossRefGoogle ScholarPubMed