Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T12:40:59.421Z Has data issue: false hasContentIssue false

Synthesis of thin films of polycrystalline ferroelectric BiNbO4 on Si by pulsed laser ablation

Published online by Cambridge University Press:  31 January 2011

Soma Chattopadhyay
Affiliation:
Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
Pushan Ayyub
Affiliation:
Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
R. Pinto
Affiliation:
Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
M. S. Multani
Affiliation:
Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
Get access

Abstract

The stibiotantalite (ABO4) family includes a number of ferroelectrics and antiferroelectrics with excellent potential for applications. We report the deposition of phase-pure, polycrystalline thin films of BiNbO4 on Si(100) substrates using pulsed laser ablation. The deposition conditions were optimized with respect to substrate temperature, laser parameters, and the ambient oxygen pressure. The films were characterized by x-ray diffraction, energy dispersive x-ray analysis, and Raman spectroscopy, while their microstructure was studied by atomic force microscopy and scanning electron microscopy. Dielectric hysteresis studies indicated that films with a thickness below ≈250 nm are ferroelectric, while thicker ones are antiferroelectric.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Francombe, M. H., in Physics of Thin Films: Mechanic and Dielectric Properties, edited by Francombe, M. H. and Vossen, J. L. (Academic Press, San Diego, CA, 1993), p. 225.CrossRefGoogle Scholar
2.Yamakawa, K., Trolier-McKinstry, S., Dougherty, J. P., and Krupanidhi, S. B., Appl. Phys. Lett. 67, 2014 (1995).CrossRefGoogle Scholar
3.Kanno, I., Hayashi, S., Kitagawa, M., Takayama, R., and Hirao, T., Appl. Phys. Lett. 66, 145 (1995).CrossRefGoogle Scholar
4.Li, K. K., Wang, F., and Haertling, G. H., J. Mater. Sci. 30, 1386 (1995).CrossRefGoogle Scholar
5.Bai, G. R., Chang, H. L. M., Lam, D. J., and Gao, Y., Appl. Phys. Lett. 62, 1754 (1993).CrossRefGoogle Scholar
6.Tabata, H., Murata, O., Kawai, T., Kawai, S., and Okuyama, M., Appl. Phys. Lett. 64, 428 (1994).CrossRefGoogle Scholar
7.Palkar, V. R., Purandare, S. C., Pai, S. P., Chattopadhyay, S., Apte, P. R., Pinto, R., and Multani, M. S., Appl. Phys. Lett. 68, 1582 (1996).CrossRefGoogle Scholar
8.Popolitov, V. I., Lobachev, A. N., and Peskin, V. F., Ferroelectrics 40, 9 (1982).CrossRefGoogle Scholar
9.Roth, R. S. and Waring, J. L., Am. Mineral. 48, 1348 (1963).Google Scholar
10.Ayyub, P., Palkar, V. R., Multani, M. S., and Vijayaraghavan, R., Ferroelectrics 76, 93 (1987).CrossRefGoogle Scholar
11.Warren, B. E., X-ray Diffraction (Addison-Wesley, New York, 1969).Google Scholar
12.Ayyub, P., Multani, M. S., Palkar, V. R., and Vijayaraghavan, R., Phys. Rev. B 34, 8137 (1986).CrossRefGoogle Scholar
13.Jona, F. and Shirane, G., Ferroelectric Crystals (Pergamon, Oxford, 1962), p. 246.Google Scholar
14.Dudkevich, V. P., Bukreev, V. A., Mukhortov, Vl. M., Golovko, Yu. I., Sindeev, Yu. G., Mukhortov, V. M., and Fesenko, E. G., Phys. Status Solidi (a) 65, 463 (1981).CrossRefGoogle Scholar
15.Qu, B., Zhong, W., Wang, K., and Wang, Z., Integrated Ferroelectrics 3, 7 (1993).CrossRefGoogle Scholar