Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T07:21:49.505Z Has data issue: false hasContentIssue false

Synthesis of the chiral stationary phase based on functionalized ZIF-8 with amylose carbamate

Published online by Cambridge University Press:  19 October 2020

Tamires Menezes
Affiliation:
Center for Studies on Colloidal Systems (NUESC)/Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil Tiradentes University (UNIT), Postgraduate Programme in Process Engineering (PEP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
Kátilla Santos
Affiliation:
Center for Studies on Colloidal Systems (NUESC)/Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil Tiradentes University (UNIT), Postgraduate Programme in Process Engineering (PEP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
Elton Franceschi
Affiliation:
Center for Studies on Colloidal Systems (NUESC)/Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil Tiradentes University (UNIT), Postgraduate Programme in Process Engineering (PEP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
Gustavo Borges
Affiliation:
Center for Studies on Colloidal Systems (NUESC)/Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil Tiradentes University (UNIT), Postgraduate Programme in Process Engineering (PEP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
Cláudio Dariva
Affiliation:
Center for Studies on Colloidal Systems (NUESC)/Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil Tiradentes University (UNIT), Postgraduate Programme in Process Engineering (PEP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
Silvia Egues
Affiliation:
Center for Studies on Colloidal Systems (NUESC)/Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil Tiradentes University (UNIT), Postgraduate Programme in Process Engineering (PEP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
Juliana De Conto*
Affiliation:
Center for Studies on Colloidal Systems (NUESC)/Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
Cesar Santana
Affiliation:
Center for Studies on Colloidal Systems (NUESC)/Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil Tiradentes University (UNIT), Postgraduate Programme in Process Engineering (PEP), Av. Murilo Dantas, 300, Aracaju, CEP 49032-490, Sergipe, Brazil
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Commercial chiral stationary phases (CSPs) are based mainly on polysaccharides supported on silica; however, the pharmaceutical industry shows a special interest on chiral separations, exhibiting high financial investment in the development of new CSPs. These can be structured by a new optically active compound or different support. Thus, metal–organic frameworks (MOFs) are crystalline materials that arise with great potential for support, due to its high porosity, the strong intermolecular force between the metal and the ligand selectivity, and high adsorption capacity. Interested in this, this work proposes a new CSP using the metal–organic structure ZIF-8 (Basolite Z1200) due to its high mechanical stability. To this end, it is proposed the modification of the ZIF-8 with the optically active compound, tris-3,5-dimethylphenylcarbamate amylose. Through characterization textural, structural, and physicochemical performed, it is possible to confirm the synthesis of the chiral compound (amylose carbamate), as well as the functionalization of the metal–organic structure with tris-3,5-dimethylphenylcarbamate amylose (ZIF-8-PEI-CA). In addition, as a validation technique, HPLC can detect the presence of enantiomers present in the racemic mixture of Troger bases.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Newbronner, E., Glendinning, C., Atkin, K., and Wadman, R.: The health and quality of life of thalidomide survivors as they age—evidence from a UK survey. PLos One 14, 1 (2019).CrossRefGoogle ScholarPubMed
Zeid, R.L.: Regulatory and development considerations of chiral compounds .In Chiral Separation Methods for Pharmaceutical and Biotechnological Products, Ahuja, S., ed. (Wiley & Sons, New Jersey, 2011), pp. 934.Google Scholar
Okamoto, Y. and Yashima, E.: Polysaccharide derivatives for chromatographic separation of enantiomers. Angew. Chem. Int. Ed. 37, 10201043 (1998).3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Zeng, Q., Wen, Q., Xiang, Y., and Zhang, L.: Chromatographic enantioseparation of chiral sulfinamide derivatives on polysaccharide-based chiral stationary phases. J. Chromatogr. A 1571, 240244 (2018).CrossRefGoogle ScholarPubMed
Liu, L., Wang, X., and Jacobson, A.: Vanadium (IV) benzenedicarboxylate: A novel adsorbent for selective separations. J. Mater. Res. 24, 19011905 (2009).CrossRefGoogle Scholar
Mo, Z., Zhu, X., Wang, G., Han, W., and Guo, R.: Molecular dynamics simulation on the interaction between single-walled carbon nanotubes and binaphthyl core-based chiral phenylene dendrimers. J. Mater. Res. 29, 21562161 (2014).CrossRefGoogle Scholar
Shen, J., Zhao, Y., Inagaki, S., Yamamoto, C., Shen, Y., Liu, S., and Okamoto, Y.: Enantioseparation using ortho- or meta-substituted phenylcarbamates of amylose as chiral stationary phases for high-performance liquid chromatography. J. Chromatogr. A 1286, 4146 (2013).CrossRefGoogle ScholarPubMed
Castrignanò, E., Kannan, A.M., Feil, E.J., and Kasprzyk-hordern, B.: Enantioselective fractionation of fluoroquinolones in the aqueous environment using chiral liquid chromatography coupled with tandem mass spectrometry. Chemosphere 206, 376386 (2018).CrossRefGoogle ScholarPubMed
Ndjawa, F.O.N., Tchalala, M.R., Shekhah, O., Khan, J.I., Mansour, A.E., Czaban-Jóźwiak, J., Weselinski, L.J., Ahsaine, H.A., Amassian, A., and Eddaoudi, M.: O crescimento de filmes finos de MOF com base em porfirina fotoativa usando a abordagem de epitaxia em fase líquida e suas propriedades optoeletrônicas. Materials 12, 2457 (2019).Google Scholar
Lin, K.-Y.A. and Chang, H.-A.: Zeolitic imidazole framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of rhodamine B in water. J. Taiwan Inst. Chem. 53, 4045 (2015).CrossRefGoogle Scholar
Ehrling, S., Kutzscher, C., Freund, P., Muller, P., Senkovska, I., and Kaskel, S.: MOF@ SiO2 core-shell composites as stationary phase in high performance liquid chromatography. Microporous Mesoporous Mater. 263, 268274 (2018).CrossRefGoogle Scholar
Xu, X., Li, H., Xie, H., Ma, Y., Chen, T., and Wang, J.: Zinc cobalt bimetallic nanoparticles embedded in porous nitrogendoped carbon frameworks for the reduction of nitro compounds. J. Mater. Res. 32, 17771786 (2017).CrossRefGoogle Scholar
Kharissova, O., Kharisov, B., Ulyand, I., and García, T.: Catalysis using metal–organic framework-derived nanocarbons. J. Mater. Res. 118 (2020).Google Scholar
Ramos, A., Tanase, S., and Rothenberg, G.: Redes metalorgânicas e suas aplicações em catálise. Quím. Nova 37, 123133 (2014).CrossRefGoogle Scholar
Ge, L., Lin, R., Zhu, Z., and Wang, H.: A nitrogen-doped electrocatalyst from metal–organic framework carbon nanotube composite. J. Mater. Res. 18 (2017).Google Scholar
Li, H., Chi, L., Yang, C., Zhang, L., Yue, F., and Wang, J.: MOF derived porous Co@C hexagonal-shaped prisms with high catalytic performance. J. Mater. Res. 31, 30693077 (2016).CrossRefGoogle Scholar
Yaghi, O.M., Li, G., and Li, H.: Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703706 (1995).CrossRefGoogle Scholar
Hendon, C., Rieth, A., KorzyńskI, M., and Dincă, M.: Grand challenges and future opportunities for metal-organic frameworks. ACS Cent. Sci. 3, 554563 (2017).CrossRefGoogle ScholarPubMed
Rocío-bautista, P., Pino, V., Pasán, J., López-hernández, I., Ayala, J.H., Ruiz-pérez, C., and Afonso, A.M.: Insights in the analytical performance of neat metal-organic frameworks in the determination of pollutants of different nature from waters using dispersive miniaturized solid-phase extraction and liquid chromatograph. Talanta 179, 775783 (2018).CrossRefGoogle Scholar
Zhu, Y., Ciston, J., Zheng, B., Miao, X., Czarnik, C., Pan, Y., and Sougrat, R.: Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nat. Mater. 16, 532536 (2017).CrossRefGoogle ScholarPubMed
Wang, C., Yang, R., and Wang, H.: Synthesis of ZIF-8/Fly Ash composite for adsorption of Cu2+, Zn2+ and Ni2+ from aqueous solutions. Materials 13, 214 (2020).CrossRefGoogle ScholarPubMed
Ahmed, A., Forster, M., Jin, J., Myers, P., and Zhang, H.: Tuning morphology of nanostructured ZIF-8 on silica microspheres and applications in liquid chromatography and dye degradation. ACS Appl. Mater. Interfaces 7, 1805418063 (2015).CrossRefGoogle ScholarPubMed
Nordin, A.N.H., Racha, S.M., Matsuura, T., Misdan, N., Aimie, N., Sani, A., Ismail, A.F., and Mustafa, A.: Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: synthesis and preparation. RSC Adv. 5, 4311043120 (2015).CrossRefGoogle Scholar
Karimi, A., Vatanpour, V., Khataee, A., and Safarpour, M.: Contra-diffusion synthesis of ZIF-8 layer on polyvinylidene fluoride ultrafiltration membranes for improved water purification. J. Ind. Eng. Chem. 73, 95105 (2019).CrossRefGoogle Scholar
Liu, H., Xie, W., Song, S., Wang, X., and Wang, Y.: Constructing hierarchically hydrophilic/superhydrophobic ZIF-8 pattern on soy protein towards a biomimetic efficient water harvesting material. Chem. Eng. J. 369, 10401048 (2019).CrossRefGoogle Scholar
Pan, Y., Heryadi, D., Zhou, F., Zhao, L., Lestari, G., Su, H., and Lai, Z.: Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. Cryst. Eng. Comm. 13, 69376940 (2011).CrossRefGoogle Scholar
Li, J.R., Sculley, J., and Zhou, H.C.: Metal organic frameworks for separations. Chem. Rev. 112, 869932 (2012).CrossRefGoogle ScholarPubMed
Zhang, Q., Cui, Y., and Qian, G.: Goal directed design of metal-organic frameworks for liquid phase adsorption and separation. Coord. Chem. Rev. 378, 310332 (2018).CrossRefGoogle Scholar
Zhang, L., Guan, P., Zhang, Z., Dai, Y., and Hao, L.: Physicochemical characteristics of complexes between amylose and garlic bioactive components generated by milling activating method. Food. Res. Int. 105, 499506 (2018).CrossRefGoogle ScholarPubMed
Zhao, J., Wang, B., Li, H., Han, Y., Li, R., Ding, X., and Feng, X.: Chirality from substitution: enantiomer separation via a modified metal–organic framework. J. Mater. Chem. 3, 1214512148 (2015).Google Scholar
Wang, X., Song, W., Zhu, Y., Liu, J., Liu, C., and Cao, C.: Chiral metal-organic framework hollow nanospheres for high efficiency enantiomer separation. Chem. Asian J. 13, 15351538 (2018).CrossRefGoogle ScholarPubMed
Chen, O., Yu, H., Wang, L., Abdin, Z., Yang, X., Wang, X., Zhou, W., Zhang, H., and Chen, X.: Synthesis and characterization of amylose grafted poly(acrylic acid) and its application in ammonia adsorption. Carbohydr. Polym. 153, 429434 (2016).CrossRefGoogle ScholarPubMed
Zhang, X., Feng, Y., Wang, Z., Jia, M., and Yao, J.: Fabrication of cellulose nanofibrils/UiO-66-NH2 composite membrane for CO2/N2 separation. J. Membr. Sci. 568, 1016 (2018).Google Scholar
Santos, P., Cardoso, M., Khouri, S., Júnior, A., Uehara, M., and Sakane, K.: Utilização da microespectroscopia infravermelha (FT-IR) para teste de algoritmos estatísticos na diferenciação dos micro-organismos Candida albicans, Candida dubliniensis e Candida parapsilosis. Rev. Bras. Eng. Bioméd. 28, 15173155 (2012).Google Scholar
Lourenço, T.C., Cassiano, N.M., and Cass, Q.B.: Fases estacionárias quirais para cromatografia líquida de alta eficiência. Quím. Nova 33, 21552164 (2010).Google Scholar
Franco, P., Senso, A., Minguillon, C., and Oliveros, L.: 3,5-dimethylphenylcarbamates of amylose, chitosan and cellulose bonded on silica gel comparison of their chiral recognition abilities as high-performance liquid chromatography chiral stationary phases. J. Chromatogr. A 796, 265272 (1998).CrossRefGoogle Scholar
Yamamoto, C., Yashima, E., and Okamoto, Y.: Structural analysis of amylose tris (3,5-dimethylphenylcarbamate) by NMR relevant to its chiral recognition mechanism in HPLC cellulose and amylose show a high chiral recognition for various. J. Am. Chem. Soc. 124, 1258312589 (2002).CrossRefGoogle Scholar
Taghizadeh, M., Abdollahi, R., and Savani, S.: Thermal and mechanical properties of graphene oxide nanocomposite hydrogel based on poly (acrylic acid) grafted onto amylose. Polym. Degrad. Stab. 147, 151158 (2018).Google Scholar
Matsuura, Y., Sakatani, T., Kado, Y., Takahashi, Y., Muramoto, Y., Fukunishi, S., and Satoshi, M.: Modification of polysilane with methacrylate having a protected isocyanate. Eur. Polym. J. 108, 219224 (2018).CrossRefGoogle Scholar
Teng, Y., Yu, G., Fu, Y., and Yin, C.: The preparation and study of regenerated cellulose fibers by cellulose carbamate pathway. Int. J. Biol. Macromol. 107, 383392 (2017).CrossRefGoogle ScholarPubMed
Manara, P., Vamvuka, D., Sfakiotakis, S., Vanderghem, C., Richel, A., and Zabaniotou, A.: Mediterranean agri-food processing wastes pyrolysis after pre-treatment and recovery of precursor materials: A TGA-based kinetic modeling study. Food Res. Int. 77, 4455 (2015).CrossRefGoogle Scholar
Thommes, M., Kaneko, K., Neimark, V.A., and Sing, W.S.K.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 10511069 (2015).CrossRefGoogle Scholar
Biswal, B., Shinde, D., Pillai, V., and Banerjee, R.: Stabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolate framework nanocrystals for photoluminescence tuning. Nanoscale 5, 1055610561 (2013).Google ScholarPubMed
Huang, A. and Feng, B.: Facile synthesis of PEI-GO@ZIF-8 hybrid material for CO2 capture. Int. J. Hydrog. Energy 43, 22242231 (2018).Google Scholar
Xian, S., Xu, F., Ma, C., Wu, Y., Xia, Q., Wang, H., and Li, Z.: Vapor-enhanced CO2 adsorption mechanism of composite PEI@ZIF-8 modified by polyethyleneimine for CO2/N2 separation. Chem. Eng. J. 280, 363369 (2015).CrossRefGoogle Scholar
Lin, Y., Yan, Q., Kong, C., and Chen, L.: Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture. Sci. Rep. 3, 1859 (2013).CrossRefGoogle ScholarPubMed
Lin, L., Liu, H., and Zhang, X.: ZnO-template synthesis of rattle-type catalysts with supported Pd nanoparticles encapsulated in hollow ZIF-8 for liquid hydrogenation. Chem. Eng. J. 328, 124132 (2017).CrossRefGoogle Scholar
Ta, D., Nguyen, H., Trinh, B., Le, Q., Ta, H., and Nguyen, H.: Preparation of nano-ZIF-8 in methanol with high yield. Can. J. Chem. Eng. 96, 15181531 (2018).CrossRefGoogle Scholar
Liu, D., Wu, U., Xia, Q., Li, Z., and Xi, H.: Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8. Adsorption 19, 2537 (2013).CrossRefGoogle Scholar
Yan, X., Yang, Y., Wang, C., Hu, X., Zhou, M., and Komarneni, M.: Synthesis of pore-expanded mesoporous ZIF-8/silica composites in the presence of swelling agent. J. Solgel. Sci. Technol. 81, 268275 (2017).CrossRefGoogle Scholar
Larraza, I., López-gónzalez, M., Corrales, T., and Marcelo, G.: Hybrid materials: Magnetite–polyethylenimine–montmorillonite, as magnetic adsorbents for Cr (VI) water treatment. J. Colloid Interface Sci. 385, 2433 (2012).CrossRefGoogle ScholarPubMed
Pokhrel, J., Bhoria, N., Anastasiou, S., Tsoufis, T., Gournis, D., Romanos, G., and Karanikolos, G.: CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/ graphene oxide composites under dry and wet conditions. Microporous Mesoporous Mater. 267, 5367 (2018).CrossRefGoogle Scholar
Ameur, S., Belhadjltaief, H., Barhoumi, A., Duponchel, B., Leroy, G., Amlouk, M., and Guermazi, H.: Physical investigations and photocatalytic activities on ZnO and SnO2 thin films deposited on flexible polymer substrate. Vacuum 155, 546552 (2018).CrossRefGoogle Scholar
Xu, B., Xu, W., Liu, Y., Chen, R., Li, W., Wu, Y., and Yang, Z.: Surface modification of α-zirconium phosphate by zeolitic imidazolate frameworks-8 and its effect on improving the fire safety of polyurethane elastomer. Polym. Adv. Technol. 29, 28162826 (2018).CrossRefGoogle Scholar
Wang, Y., Xu, Y., Ma, H., Xu, R., Liu, H., Li, D., and Tian, Z.: Synthesis of ZIF-8 in a deep eutectic solvent using cooling-induced crystallisation. Microporous Mesoporous Mater. 195, 5059 (2014).CrossRefGoogle Scholar
Gao, Y., Qiao, Z., Zhao, S., Wang, Z., and Wang, J.: In situ synthesis of polymer grafted ZIFs and application in mixed matrix membrane for CO2 separation. J. Mater. Chem. A 6, 31513161 (2018).CrossRefGoogle Scholar
Li, G., Chai, K., Zhou, L., Tong, Z., and Ji, H.: Easy fabrication of aromatic-rich cellulose-urethane polymer for preferential adsorption of acetophenone over 1-phenylethanol. Carbohydr. Polym. 206, 716725 (2019).CrossRefGoogle ScholarPubMed
Rojek, B. and Wesolowski, M.: FTIR and TG analyses coupled with factor analysis in a compatibility study of acetazolamide with excipientes. Spectrochim. Acta, Part A 208, 285293 (2019).CrossRefGoogle Scholar
Catauro, M., Tranquillo, E., Dell'era, A., TuffI, R., and Ciprioti, S.: Thermal behavior and structural study of ZrO2/poly(ε-caprolactone) hybrids synthesized via sol-gel route. Ceram. Int. 45, 27712778 (2019).CrossRefGoogle Scholar
Hwang, S., Chi, W., Lee, S., Im, S., Kim, J., and Kim, J.: Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation. J. Membr. Sci. 480, 1119 (2015).CrossRefGoogle Scholar
Ordonez, J., Balkus, K., Ferraris, J., and Musselman, I.: Molecular sieving realized with ZIF-8/matrimid mixed-matrix membranes. J. Membr. Sci. 361, 2837 (2010).Google Scholar
Abdelhameed, R., El-Zawahry, M., and Emam, H.: Efficient removal of organophosphorus pesticides from wastewater using polyethylenimine-modified fabrics. Polymer 155, 225234 (2018).CrossRefGoogle Scholar
Petit, T. and Puskar, L.: FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diamond Relat. Mater. 89, 5266 (2018).CrossRefGoogle Scholar
Wu, S., Lin, A., Hsieh, H., and Tsui, H.: Elucidation of adsorption mechanisms of solvent molecules with distinct functional groups on amylose tris(3,5-dimethylphenylcarbamate)-based sorbent. J. Chromatogr. A 1460, 123134 (2016).Google ScholarPubMed
Zhang, H. and Wang, Y.: Poly(vinyl alcohol)/ZIF-8-NH2 mixed matrix membranes for ethanol dehydration via pervaporation. AIChE J. 62 (2016).CrossRefGoogle Scholar
Sun, Y., Wu, Q., Shi, X., Gao, J., Dong, S., and Zhao, L.: Nano-amylose-2,3-bis(3,5-dimethylphenylcarbamate)-silica hybrid sol immobilized on open tubular capillary column for capillary electrochromatography enantioseparation. Electrophoresis 8, 110 (2018).Google Scholar
Siangsai, A., Kumpoomee, N., Rangsunvigit, P., Kitiyanan, B., and Kulprathipanja, S.: Comparative study of methane adsorption on activated carbon and metal organic frameworks. Chem. Eng. Trans. 39, 523528 (2014).Google Scholar
Tsai, C. and Langner, E.: The effect of synthesis temperature on the particle size of nano-ZIF-8. Microporous Mesoporous Mater. 221, 813 (2016).CrossRefGoogle Scholar
Araújo, J., Rodrigues, R., Eusébio, M., and Mota, J.: On-line enantiomeric analysis using high-performance liquid chromatography in chiral separation by simulated moving bed. J. Chromatogr. A 1189, 292301 (2008).CrossRefGoogle ScholarPubMed
Tatar, A., Valík, M., Novotná, J., Havlík, J., Dolenský, B., Král, V., and Urbanová, M.: Preparation and enantioselectivity binding studies of a new chiral cobalt(II)porphyrin-Tröger's base conjugate. Chirality 26, 361367 (2014).CrossRefGoogle ScholarPubMed
Huthmann, E. and Juza, M.: Modification of a commercial chiral stationary phase Influences on enantiomer separations using simulated moving bed chromatography. J. Chromatogr. A 908, 185200 (2001).CrossRefGoogle ScholarPubMed
Mihlbachler, K., Kaczmarski, K., Seidel-morgenstern, A., and Guiochon, G.: Measurement and modeling of the equilibrium behavior of the Troger's base enantiomers on an amylose-based chiral stationary phase. J. Chromatogr. A 955, 3552 (2002).CrossRefGoogle Scholar
Jarzebskia, A., Bannwarth, C., Tenten, C., Benkhäuser, C., Schnakenburg, G., Grimme, S., and Lützen, A.: Synthesis, chiral resolution, and absolute configuration of functionalized Tröger's base derivatives. Synthesis 47, 31183132 (2015).Google Scholar
Singh, A., Kedor-hackmann, E., and Santoro, M.: Cromatografia líquida com fase quiral aplicada na separação enantiomérica de fármacos cardiovasculares. Brazilian J. Pharm. Sci. 42 (2006).Google Scholar
Neto, A.: Problemas com o formato dos picos em cromatografia líquida. Sci. Chrom. 1, 7181 (2009).Google Scholar
Chen, D., Meng, Y., Zhu, Y., Wu, G., Yuan, J., Qin, M., and Xie, G.: Qualitative and quantitative analysis of C-glycosyl-flavones of iris lactea leaves by liquid chromatography/tandem mass spectrometry. Molecules 23, 3359 (2018).CrossRefGoogle ScholarPubMed
Ferraiolo, A.F.: Caracterização e aplicação da fase estacionária quiral tris(3,5-dimetilfenilcarbamato) de amilose na separação preparativa dos enantiômeros do omeprazol. Universidade estadual de Campinas,São Paulo, 2009.Google Scholar
Wu, M., Ye, H., Zhao, F., and Zeng, B.: High-quality metal–organic framework ZIF-8 membrane supported on electrodeposited ZnO/2-methylimidazole nanocomposite: Efficient adsorbent for the enrichment of acidic drugs. Sci. Rep. 7, 39778 (2017).CrossRefGoogle ScholarPubMed
Alaerts, L., Maes, M., Jacobs, P.A., Denayer, J.F.M., and De Vos, D.E.: Activation of the metal–organic framework MIL-47 for selective adsorption of xylenes and other difunctionalized aromatics. Phys. Chem. Chem. Phys. 10, 29792985 (2008).CrossRefGoogle ScholarPubMed
Ma, X., Li, L., Wang, S., Lu, M., Li, H., Ma, W., and Keener, T.: Ammonia-treated porous carbon derived from ZIF-8 for enhanced CO2 adsorption. Appl. Surf. Sci. 369, 390397 (2016).CrossRefGoogle Scholar
Qin, W., Silvestre, M.E., Brenner-Weiss, G., Wang, Z., Schmitt, S., Hübner, J., and Franzreb, M.: Insights into the separation performance of MOFs by high performance liquid chromatography and in-depth modelling. Sep. Purif. Technol. 156, 249258 (2015).CrossRefGoogle Scholar
Van der Walt, S., Schonberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., and Yu, T.: scikit-image: image processing in Python. PeerJ (2014). doi: 10.7717/peerj.453.CrossRefGoogle ScholarPubMed
Supplementary material: File

Menezes et al. supplementary material

Figures S1-S3

Download Menezes et al. supplementary material(File)
File 995.1 KB