Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T03:29:29.922Z Has data issue: false hasContentIssue false

Synthesis of superconductors from metal neodecanoates

Published online by Cambridge University Press:  31 January 2011

T.N. Bowmer
Affiliation:
Bellcore, Red Bank, New Jersey 07701
F.K. Shokoohi
Affiliation:
Bellcore, Red Bank, New Jersey 07701
Get access

Abstract

Metal-organic precursors can facilitate the production of superconducting thin films on large area substrates for microelectronic device applications. This paper describes the chemistry that occurs during the thermal processing of yttrium-, barium-, and copper-neodecanoate mixtures into a superconducting material, YBa2Cu3O7−x. Intermediates such as metal carbonates and oxides are identified by combining thermogravimetry with infrared spectral and x-ray diffraction analysis. Changing from argon to oxygen atmospheres increased decomposition rates and metal oxide formation. We found that (1) a low temperature (500–600 °C) decomposition in an oxygen-poor atmosphere, (2) a high temperature (>925 °C) annealing step in an oxygen-rich atmosphere, and (3) slow cooling to 50 °C are all required to produce uniform superconducting films.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Delayen, J. R., Goretta, K. C., Poepel, R. B., and Shepard, K. W., Appl. Phys. Lett. 52, 930 (1989).CrossRefGoogle Scholar
2Kautz, R. L., J. Appl. Phys. 49, 308 (1978).CrossRefGoogle Scholar
3Barboux, P., Tarascon, J-M., Shokoohi, F., Wilkens, B. J., and Schwartz, C. L., J. Appl. Phys. 64, 6382 (1988).CrossRefGoogle Scholar
4Gupta, A., Koren, G., Geiss, E. A., Moore, N. R., O'Sullivan, E. J. M., and Cooper, E. I., Appl. Phys. Lett. 52, 163 (1988).CrossRefGoogle Scholar
5Nigrey, P. J., private communication (1989).Google Scholar
6Rice, C. E., Dover, R. B. van, and Fisanick, G. J., Appl. Phys. Lett. 51, 1842 (1987).CrossRefGoogle Scholar
7Barboux, P., Tarascon, J-M., Bagley, B. G., Greene, L. H., Hull, G. M., Meagher, B. W., and Eom, C. B., in High-Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 49.Google Scholar
8Gross, M. E., Hong, M., Liou, S. H., Gallagher, P. K., and Kwo, J., Appl. Phys. Lett. 52, 160 (1988).CrossRefGoogle Scholar
9Hamdi, A. H., Mantese, J. V., Micheli, A. L., Laugal, R. C. O., Dungan, D. F., Zhang, Z. H., and Padmanabham, K. R., Appl. Phys. Lett. 51, 2152 (1987).CrossRefGoogle Scholar
10Hamdi, A. H., Mantese, J. V., Micheli, A. L., Waldo, R. A., Chen, Y. L., and Wong, C. A., Appl. Phys. Lett. 53, 435 (1988).CrossRefGoogle Scholar
11Mantese, J. V., Catalan, A. B., Hamdi, A. H., and Micheli, A. L., Appl. Phys. Lett. 52, 1741 (1988).CrossRefGoogle Scholar
12Mantese, J. V., Catalan, A. B., Hamdi, A. H., Micheli, A. L., and Studer-Rabeler, K., Appl. Phys. Lett. 53, 526 (1988).CrossRefGoogle Scholar
13Mantese, J. V., Catalan, A. B., Mance, A. M., Hamdi, A. H., Micheli, A. L., Sell, J. A., and Meyer, M. S., Appl. Phys. Lett. 53, 1335 (1988).CrossRefGoogle Scholar
14Judd, M. D., Plunkett, B. A., and Pope, M. I., J. Therm. Anal. 6, 55 (1974).CrossRefGoogle Scholar
15Judd, M. D., Plunkett, B. A., and Pope, M. I., J. Therm. Anal. 9, 83 (1976).CrossRefGoogle Scholar
16Wendlandt, W. W., Thermal Analysis (Wiley Interscience Pub., 1974).Google ScholarPubMed
17Ahlstrom, D. A., Liebman, S. A., and Abbas, K. B., J. Polym. Sci.-Polym. Chem. Ed. 14, 2479 (1976).CrossRefGoogle Scholar