Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T04:50:21.288Z Has data issue: false hasContentIssue false

Synthesis of SrTiO3 nanoparticle/polymer composite film using direct current field

Published online by Cambridge University Press:  31 January 2011

Yasuko Okumura
Affiliation:
Division of Nanomaterials Science, EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Chifumi Oi
Affiliation:
Division of Nanomaterials Science, EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Wataru Sakamoto
Affiliation:
Division of Nanomaterials Science, EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Toshinobu Yogo*
Affiliation:
Division of Nanomaterials Science, EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanocrystalline SrTiO3 particle/polymer composite film was synthesized from a titanium–organic film and strontium ion in aqueous solution by applying a direct current (dc) field. The titanium–organic precursor was synthesized from acetylacetone-modified titanium isopropoxide and a methacrylate derivative. Ultraviolet treatment of the titanium–organic film decreased the leaching of Ti moieties from the precursor film during dc treatment. Crystalline SrTiO3 particles were formed in the precursor films on stainless-steel substrates under a dc field above 40 °C without a high-temperature process. The size of SrTiO3 particles increased with increasing reaction temperature from 40 to 50 °C at 3.0 V/cm. SrTiO3 particles also increased in size with increasing reaction time from 35 to 60 min at 3.0 V/cm and at 50 °C. SrTiO3 particle/polymer films were synthesized on stainless-steel substrates at 3.0 V/cm and 50 °C for 60 min.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gomez-Romero, C.Sanchez, C.: Hybrid materials, functional applications: An Introduction in Functional Hybrid Materials edited by C. Gomez-Romero and C. Sanchez Wiley-VCH Weinheim, Germany 2004 1Google Scholar
2Alivisatos, P.A.: Semiconductor clusters, nanocrystals and quantum dots. Science 271, 933 1993CrossRefGoogle Scholar
3Charles, S.W.Popplewell, J.: Ferromagnetic liquids in Ferromagnetic Materials Vol. 2 edited by E.P. Wohlfarth North-Holland Amsterdam 1980 509Google Scholar
4Wilk, G.D., Wallace, R.M.Anthony, J.M.: High-κ gate dielectrics: Current status and material properties considerations. J. Appl. Phys. 89, 5243 2001CrossRefGoogle Scholar
5Joshi, P.C.Krupanidhi, S.B.: Structural and electrical characteristics of SrTiO3 thin films for dynamic random-access memory applications. J. Appl. Phys. 73, 7627 1993CrossRefGoogle Scholar
6Pfaff, G., Schmidt, F., Ludwig, W.Feltz, A.: MIITiO(C2O4)2⋅4H2O (MII=Mg, Ca, Sr or Ba) as precursors in the formation of MIITiO3 powders. J. Therm. Anal. 33, 771 1988CrossRefGoogle Scholar
7Fan, W.Niinisto, L.: Preparation of strontium titanate using strontium titanyl oxalate as precursor. Mater. Res. Bull. 29, 451 1994CrossRefGoogle Scholar
8Smith, J.S. II, Dolloff, R.T.Mazdiyasni, K.S.: Preparation and characterization of alkoxy-derived SrZrO3 and SrTiO3. J. Am. Ceram. Soc. 53, 91 1970CrossRefGoogle Scholar
9Chen, R., Jiao, X.L.Zhang, M.S.: Hydrothermal synthesis of strontium titanate powders with nanometer size derived from different precursors. J. Eur. Ceram. Soc. 20, 1261 2000CrossRefGoogle Scholar
10Um, M.H.Kumazawa, H.: Hydrothermal synthesis of ferroelectric barium and strontium titanate extremely fine particles. J. Mater. Sci. 35, 1295 2000CrossRefGoogle Scholar
11Mao, Y.Wong, S.: Composition and shape control of crystalline Ca1–xSrxTiO3 perovskite nanoparticles. Adv. Mater. 17, 2194 2005CrossRefGoogle Scholar
12Yogo, T., Yamada, S., Kikuta, K.Hirano, S.: Synthesis of barium titanate/polymer composites from metal alkoxide. J. Sol.-Gel Sci. Technol. 2, 175 1994CrossRefGoogle Scholar
13Yogo, T., Yamamoto, T., Sakamoto, W.Hirano, S.: In situ synthesis of nanocrystalline BaTiO3 particle-polymer hybrid. J. Mater. Res. 19, 3290 2004CrossRefGoogle Scholar
14Yogo, T., Ukai, H., Sakamoto, W.Hirano, S.: Synthesis of PbTiO3/organic hybrid from metalorganic compounds. J. Mater. Res. 14, 3275 1999CrossRefGoogle Scholar
15Yogo, T., Banno, K., Sakamoto, W.Hirano, S.: Synthesis of a KNbO3 particle/polymer hybrid from metalorganics. J. Mater. Res. 18, 1679 2003CrossRefGoogle Scholar
16Kondo, Y., Shimura, T., Sakamoto, W.Yogo, T.: Field-assisted synthesis of BaTiO3 particle/polyvinylbutyral composite film. J. Mater. Res. 21, 1843 2006CrossRefGoogle Scholar
17Puri, D.M., Pande, K.C.Mehrotra, R.C.: Derivatives of titanium with compounds having bidentate ligands: III. Reactions with titanium alkoxide with acetylacetone. J. Less-Common Met. 4, 393 1962CrossRefGoogle Scholar
18Cullity, B.D.Elements of X-ray Diffraction 2nd ed.Addison-Wesley Reading, MA 1978 284Google Scholar
19Bradley, D.C., Mehrotra, R.C.Gaur, D.P.: Metal Alkoxide Academic Press New York 1978 118Google Scholar
20Last, J.T.: Infrared-absorption studies on barium titanate and related materials. Phys. Rev. 105, 1740 1957CrossRefGoogle Scholar
21Nair, A.White, R.L.: Effects of inorganic oxides on polymer binder burnout: I. Poly(vinyl butyral). J. Appl. Polym. Sci. 60, 1901 19963.0.CO;2-3>CrossRefGoogle Scholar
22Yamanaka, S., Maruyama, G.Ueyama, T.: The thermal decomposition of polyvinylbutyral/PLZT, PMN dielectric powder composite. J. Ceram. Soc. Jpn. 100, 657 1992CrossRefGoogle Scholar