Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T14:02:21.191Z Has data issue: false hasContentIssue false

Synthesis of Oriented BiFeO3 Thin Films by Chemical Solution Deposition: Phase, Texture, and Microstructural Development

Published online by Cambridge University Press:  01 August 2005

F. Tyholdt
Affiliation:
Centre for Materials Science and Nanotechnology, Department of Chemistry, NO-0315 Oslo, Norway
S. Jørgensen
Affiliation:
Centre for Materials Science and Nanotechnology, Department of Chemistry, NO-0315 Oslo, Norway
H. Fjellvåg*
Affiliation:
Centre for Materials Science and Nanotechnology, Department of Chemistry, NO-0315 Oslo, Norway
A.E. Gunnæs
Affiliation:
Centre for Materials Science and Nanotechnology, Department of Physics, NO-0349 Oslo, Norway
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Textured, thin films of BiFeO3 (∼120 nm thickness) were synthesized by chemical solution deposition from a mixture of iron- and bismuth- 2-methoxyethoxides on Si(100)/SiO2/TiO2/Pt substrates. The use of alkoxides ensured good homogeneity and a low degree of organics that further facilitated low crystallization temperatures. Crystalline films were according to x-ray diffraction already obtained at 480 °C. Precursor characteristics were investigated using thermogravimetry and differential scanning calorimetry, whereas phase purity, microstructure and film topography were examined by x-ray diffraction, transmission electron microscopy, atomic force microscopy, and x-ray photoelectron spectroscopy. A small (10%) Bi excess was found necessary to obtain dense, pore-free films. Such additions also prevented decomposition of BiFeO3 at high temperatures. The observed (012) texture is believed to originate from the growth mechanism as no relation to the substrate is found. This is also confirmed by observing (012) texture for films on glass substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Filip’ev, V.S., Smolyaninov, N.P., Fesenko, E.G. and Belyaev, I.N.: Formation of BiFeO3 and determination of unit cell. Kristallografiya 5, 958 (1960).Google Scholar
2Moreau, J.M., Michel, C., Gerson, R. and James, W.J.: Ferroelectric bismuth ferrite [BiFeO3] x-ray and neutron diffraction study. J. Phys. Chem. Solids 32, 1315 (1971).CrossRefGoogle Scholar
3Sosnowska, I., Przenioslo, R., Fischer, P. and Murashov, V.A.: Neutron diffraction studies of the crystal and magnetic structures of BiFeO3 and Bi0.93La0.07FeO3. J. Magn. Magn. Mater. 160, 384 (1996).CrossRefGoogle Scholar
4Smolenskii, G.A., Bokov, V.A. and Mitsek, A.I.: Coexistence of magnetic and electric ordering in crystals. Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya 28, 614 (1964).Google Scholar
5Roginskaya, Y.E., Venevtse, Y.N. and Zhdanov, G.S.: New magnetic ferroelectrics. Soviet Physics Jetp-Ussr Sov. Phys. Jetp-Ussr 21, 817 (1965).Google Scholar
6Gerson, R. and James, W.J.: Ferroelectric properties of bismuth ferrate and related materials. (Graduate Center for Materials Research, Univ. of Missouri, Rolla, MO, 1970), p. 65.CrossRefGoogle Scholar
7Bhide, V.G. and Multani, M.S.: Moessbauer effect in ferroelectric-antiferromagnetic BiFeO3. Solid State Commun. 3, 271 (1965).CrossRefGoogle Scholar
8Fischer, P., Polomska, M., Sosnowska, I. and Szymanski, M.: Temperature dependence of the crystal and magnetic structures of bismuth iron trioxide. J. Phys. C.: Solid State 13, 1931 (1980).CrossRefGoogle Scholar
9Morozov, M.I., Lomanova, N.A. and Gusarov, V.V.: Specific features of BiFeO3 formation in a mixture of bismuth(iii) and iron(iii) oxides. Russ. J. Gen. Chem. 73, 1676 (2003).CrossRefGoogle Scholar
10Tabares-Munoz, C., Rivera, J.P. and Schmid, H.: Ferroelectric domains, birefringence and absorption of single crystals of bismuth ferrate (BiFeO3). Ferroelectrics 55, 903 (1984).CrossRefGoogle Scholar
11Fedulov, S.A., Venevtsev, Y.N., Zhdanov, G.S. and Smazhevskaya, E.G.: High temperature x-ray and thermographic studies of bismuth ferrite. Kristallografiya 6, 795 (1961).Google Scholar
12Maksimova, O.S., Jansons, G., and Freidenfelds, E.Kinetics of the formation of bismuth orthoferrite. Latvijas PSR Zinatnu Akademijas Vestis, Kimijas Serija 2, 144 (1968).Google Scholar
13Smolenskii, G.A., Yudin, V.M.Weak ferromagnetism in some bismuth ferrite-lead (iron, niobium) trioxide perovskites. Fizika Tverdogo Tela (Sankt-Peterburg) 6, 3668 (1964).Google Scholar
14Sosnowska, I., Neumayer, T. and Steichele, E.: Spiral magnetic ordering in bismuth ferrite. J. Phys. Chem. C 15, 4835 (1982).Google Scholar
15Teague, J.R., Gerson, R. and James, W.J.: Dielectric hysteresis in single crystal bismuth iron(II) oxide. Solid State Commun. 8, 1073 (1970).CrossRefGoogle Scholar
16Yun, K.Y., Ricinschi, D., Kanashima, T., Noda, M. and Okuyama, M.: Giant ferroelectric polarization beyond 150 μC/cm2 in BiFeO3 thin film. Jpn. J. Appl. Phys. 2 43, L647 (2004).CrossRefGoogle Scholar
17Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M. and Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).CrossRefGoogle ScholarPubMed
18Yun, K.Y., Noda, M., Okuyama, M., Saeki, H., Tabata, H. and Saito, K.: Structural and multiferroic properties of BiFeO3 thin films at room temperature. J. Appl. Phys. 96, 3399 (2004).CrossRefGoogle Scholar
19Teowee, G., McCarthy, K., McCarthy, F., Bukowski, T.J., Alexander, T.P. and Uhlmann, D.R.: Dielectric and ferroelectric properties of sol-gel derived BiFeO3 films. Integr. Ferroelectr. 18, 329 (1997).CrossRefGoogle Scholar
20Yun, K-Y., Noda, M. and Okuyama, M.: Effects of annealing atmosphere on crystallization and electrical properties in BiFeO3 thin films by chemical solution deposition (CSD). J. Korean Phys. Soc. 42, S1153 (2003).Google Scholar
21Kumar, M.M., Palkar, V.R., Srinivas, K. and Suryanarayana, S.V.: Ferroelectricity in a pure BiFeO3 ceramic. Appl. Phys. Lett. 76, 2764 (2000).CrossRefGoogle Scholar
22Palkar, V.R. and Pinto, R.: BiFeO3 thin films: Novel effects. Pramana 58, 1003 (2002).CrossRefGoogle Scholar
23Palkar, V.R., John, J. and Pinto, R.: Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films. Appl. Phys. Lett. 80, 1628 (2002).CrossRefGoogle Scholar
24Yun, K.Y., Noda, M. and Okuyama, M.: Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed laser deposition. Appl. Phys. Lett. 83, 3981 (2003).CrossRefGoogle Scholar
25Wang, Y.P., Zhou, L., Zhang, M.F., Chen, X.Y., Liu, J.M. and Liu, Z.G.: Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731 (2004).CrossRefGoogle Scholar
26Mizusaki, J., Sasamoto, T., Cannon, W.R. and Bowen, H.K.: Electronic conductivity, Seebeck coefficient, and defect structure of lanthanum iron oxide (LaFeO3). J. Am. Ceram. Soc. 65, 363 (1982).CrossRefGoogle Scholar
27Craig, D.C. and Stephenson, N.C.: Structural studies of some body-centered cubic phases of mixed oxides involving bismuth(III) oxide. Structures of bismuth iron oxide (Bi25FeO40) and bismuth zinc oxide (Bi38ZnO60). J. Solid State Chem. 15, 1 (1975).CrossRefGoogle Scholar
28Kaplunnik, L.N., Terent’eva, L.E., Pobedimskaya, E.A. and Petushkova, L.V.: Crystal chemistry study of sillenites. (VINITI, Moskov, Russia, 1982), p. 23.Google Scholar
29Koizumi, H., Niizeki, N. and Ikeda, T.: X-ray study of the Bi2O3–Fe2O3 system. Jpn. J. Appl. Phys. 3, 495 (1964).CrossRefGoogle Scholar
30Speranskaya, E.I., Skorikov, V.M., Rode, E.Y., and Terekhova, V.A.Phase diagram of the system of bismuth oxide-iron oxide. Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya 5, 905 (1965).Google Scholar
31Maitre, A., Francois, M. and Gachon, J.C.: Experimental study of the Bi2O3–Fe2O3 pseudo-binary system. J. Phase Equilib Diff. 25, 59 (2004).CrossRefGoogle Scholar
32Mukherjee, J.L. and Wang, F.F.Y.: Kinetics of solid-state reaction of bismuth trioxide and ferric oxide. J. Am. Ceram. Soc. 54, 31 (1971).CrossRefGoogle Scholar
33Zakharov, A.A., Shaplygin, I.S., and Subrt, J.Solid-phase interaction between bismuth sesquioxide and ferric oxide. Izvestiya Sibirskogo Otdeleniya Akademii Nauk SSSR, Seriya Khimicheskikh Nauk 6, 69 (1982).Google Scholar
34Veith, M., Yu, E-C. and Huch, V.: Synthesis and structures of alkali(alkoxy) antimonates and bismuthates. Chem. Eur. J. 1, 26 (1995).CrossRefGoogle Scholar
35Jolas, J.L., Hoppe, S. and Whitmire, K.H.: Oligomerization and oxide formation in bismuth aryloxides: Synthesis, characterization, and structures of [NaBi(OC6F5)4(THF)] and Na4Bi26–O) (OC6F5)8(THF)4. Inorg. Chem. 36, 3335 (1997).CrossRefGoogle Scholar
36Whitmire, K.H., Hoppe, S., Sydora, O., Jolas, J.L. and Jones, C.M.: Oligomerization and oxide formation in bismuth aryl alkoxides: Synthesis and characterization of Bi44–O)(μ –OC6F5)6{μ3–OBi (μ–OC6F5)3}2(C6H5CH3), Bi84–O)23–O)2(μ–OC6F5)16, Bi63–O)43–OC6F5){μ3–OBi(OC6F5)4}3, NaBi43–O)2(OC6F5)9 (THF)2, and Na2Bi43–O)2(OC6F5)10(THF)2. Inorg. Chem. 39, 85 (2000).CrossRefGoogle Scholar
37Whitmire, K.H., Jones, C.M., Burkart, M.D., Hutchison, J.C. and McKnight, A.: Aggregation and hydrolysis reactions of bismuth alkoxides, in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M.J., Klemperer, W.G., and Brinker, C.J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 149.Google Scholar
38Hunger, M., Limberg, C. and Kircher, P.: Syntheses and ligating properties of molybdocene alkoxides—the first heterodimetallic alkoxide containing molybdenum and bismuth. Angew. Chem. Int. Ed. Engl. 38, 1105 (1999).3.0.CO;2-U>CrossRefGoogle ScholarPubMed
39Hunger, M., Limberg, C. and Kircher, P.: Syntheses of heteronuclear molybdenum/bismuth alkoxides stabilized by organic ligands. Organometallics 19, 1044 (2000).CrossRefGoogle Scholar
40Papiernik, R., Hubert-Pfalzgraf, L.G., Parola, S., Jagner, S., Soares-Carvalho, F., Thomas, P. and Mercurio, J.P.: Mixed-metal bismuth-titanium species. Chemical routes to Bi4Ti3O12, in Better Ceramics Through Chemistry VI, edited by Cheethamn, A.K., Brinker, C.J., Mecartney, M.L., and Sanchez, C. (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1994), p. 285.Google Scholar
41Gurkovich, S.R. and Blum, J.B.: Preparation of monolithic lead titanate by a sol-gel process, in Ultrastruct. Process. Ceram., Glasses, Compos., edited by Hench, L.L. and Ulrich, D.R. (Wiley, NY, 1984) p. 152.Google Scholar
42Budd, K.D., Dey, S.K. and Payne, D.A.: Sol-gel processing of lead titanate (PbTiO3), lead zirconate (PbZrO3), PZT, and PLZT thin films. Brit. Ceram. Proc. 36, 107 (1985).Google Scholar
43Thiessen, P.A. and Koerner, O.: Ferric ethylate. Preparation and properties. Z. Anorg. Allgem. Chem. 180, 65 (1929).CrossRefGoogle Scholar
44Bradley, D.C., Multani, R.K. and Wardlaw, W.: Structural chemistry of the alkoxides. X. Primary alkoxides of tervalent iron. J. Chem. Soc. 126(1958).Google Scholar
45Adams, R.W., Martin, R.L. and Winter, G.: Magnetism, electronic spectra, and structure of transition metal alkoxides. II. The preparation and magnetism of iron(III) alkoxides. Aust. J. Chem. 19, 363 (1966).CrossRefGoogle Scholar
46Mathur, S., Veith, M., Sivakov, V., Shen, H. and Gao, H.B.: Composition, morphology and particle size control in nanocrystalline iron oxide films grown by single-source CVD. J. Phys. IV: Proceedings 11, Pr3/487 (2001).Google Scholar
47Spandl, J., Kusserow, M. and Bruedgam, I.: Alkoxo compounds of iron(III). Syntheses and characterization of [Fe2(OtBu)6], [Fe2Cl2(OtBu)4], [FeCl4(OtBu)2], [N(nBu)4]2, and Fe6OCl6(OMe)12. Z. Anorg. Allgem. Chem. 629, 968 (2003).CrossRefGoogle Scholar
48Mehrotra, R.C. and Rai, A.K.: Bismuth alkoxides. Indian J. Chem. 4, 537 (1966).Google Scholar
49Evans, W.J., Hain, J.H. and Ziller, J.W.: Synthesis and 1st x-ray crystal-structure of a Bi(OR)3 complex-tris(2,6-dimethylphenoxo) bismuth. J. Chem. Soc., Chem. Commum. 21, 1628 (1989).CrossRefGoogle Scholar
50Massiani, M.C., Papiernik, R., Hubert-Pfalzgraf, L.G. and Daran, J.C.: Molecular precursors of bismuth oxides; β-diketonates and alkoxides. Molecular structure of [Bi221–OC2H4OMe)41–OC2H4OMe)2] and of Bi(OSiPh3)3(THF)3. Polyhedron 10, 437 (1991).CrossRefGoogle Scholar
51Ando, F., Hayashi, T., Ohashi, K. and Koketsu, J.: Preparations and reactions of tris(dialkylamino)bismuthine. J. Inorg. Nucl. Chem. 37, 2011 (1975).CrossRefGoogle Scholar
52Carmalt, C.J., Compton, N.A., Errington, J.R., Fisher, G.A., Moenandar, I. and Norman, N.C.: Homoleptic bismuth amides. Inorg. Synth. 31, 98 (1997).CrossRefGoogle Scholar
53Clegg, W., Compton, N.A., Errington, R.J., Fisher, G.A., Green, M.E., Hockless, D.C.R. and Norman, N.C.: X-ray crystal-structure of Bi(NMe2)3. Inorg. Chem. 30, 4680 (1991).CrossRefGoogle Scholar
54 Casa software Ltd., Cheshire, U.K., (www.casaxps.com), 2004.Google Scholar
55Handbook of X-Ray Photoelectron Spectroscopy, edited by Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D. (Perkin-Elmer Corporation, Physical Electronics Division, 1992).Google Scholar
56Matchett, M.A., Chiang, M.Y. and Buhro, W.E.: Soluble and volative alkoxides of bismuth—the 1st structurally characterized bismuth trialkoxide–[Bi(μ-eta-1-OCH2CH2OMe)2(eta-1-OCH2CH2OME)] infinity. Inorg. Chem. 29, 358 (1990).CrossRefGoogle Scholar
57Zav’yalova, A.A. and Imamov, R.M.: Determination of the crystalline structure of a new tetragonal phase in a bismuth-oxygen system. Kristallografiya 13, 49 (1968).Google Scholar
58Harwig, H.A. and Gerards, A.G.: The polymorphism of bismuth sesquioxide. Thermochim. Acta 28, 121 (1979).CrossRefGoogle Scholar
59Schwartz, R.W., Voigt, J.A., Tuttle, B.A., Payne, D.A., Reichert, T.L. and Dasalla, R.S.: Comments on the effects of solution precursor characteristics and thermal processing conditions on the crystallization behavior of sol-gel derived lead zirconate titanate thin films. J. Mater. Res. 12, 444 (1997).CrossRefGoogle Scholar
60Schwartz, R.W.: Chemical solution deposition of perovskite thin films. Chem. Mater. 9, 2325 (1997).CrossRefGoogle Scholar
61Roy, R.: Gel route to homogeneous glass preparation. J. Am. Ceram. Soc. 52, 344 (1969).CrossRefGoogle Scholar
62Nilsen, O., Fjellvag, H. and Kjekshus, A.: Growth of calcium carbonate by the atomic layer chemical vapour deposition technique. Thin Solid Films 450, 240 (2004).CrossRefGoogle Scholar
63Kohli, M., Muralt, P. and Setter, N.: Removal of 90 Deg domain pinning in (100) Pb(Zr0.15Ti0.85)O3 thin films by pulsed operation. Appl. Phys. Lett. 72, 3217 (1998).CrossRefGoogle Scholar
64 Inorganic Crystal Structure Database (ICSD) Fachinformationszentrum, Karlsruhe, Germany, and National Insitute of Standards and Technology, Gaithersburg, MD.Google Scholar
65 Powder Diffraction File Database, JCPDS–International Center for Diffraction Data, PA.Google Scholar