Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-20T07:16:55.025Z Has data issue: false hasContentIssue false

Synthesis of nanostructured SnO and SnO2 by high-energy milling of Sn powder with stearic acid

Published online by Cambridge University Press:  08 August 2013

Lizandro Manzato
Affiliation:
Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, 1672 Distrito Industrial, Manaus, Amazonas 69075-351, Brazil
Daniela Menegon Trichês*
Affiliation:
Departamento de Física, Universidade Federal do Amazonas, Setor Norte, Av. Gen. Rodrigo Otávio Ramos, 3000, Coroado, Manaus, Amazonas 69077-000, Brazil
Sérgio Michielon de Souza
Affiliation:
Departamento de Física, Universidade Federal do Amazonas, Setor Norte, Av. Gen. Rodrigo Otávio Ramos, 3000, Coroado, Manaus, Amazonas 69077-000, Brazil
Marcelo Falcão de Oliveira
Affiliation:
Universidade de São Paulo, Escola de Engenharia de São Carlos, 13.560-970 São Carlos, SP, Brazil
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effects of stearic acid on the high-energy ball milling of tin powder have been investigated. The mean crystallite sizes, microstrain, and phase transformations were examined using different techniques like x-ray diffraction (XRD), Rietveld refinement method, and differential scanning calorimetry (DSC). After 28 h of milling, the Rietveld analysis showed the stabilization of Sn mean crystallite sizes at around 50 nm. Due to the presence of oxygen in stearic acid, the milling process gradually produced an amorphous Sn oxide phase. The DSC thermogram of the sample milled for 28 h showed two exothermic peaks separated by an endothermic peak. Based on the DSC measurements, two samples were annealed at 240 and 350 °C for 20 min. The annealing at 240 °C confirmed the presence of an amorphous phase which crystallized in nanostructured tetragonal SnO phase. The annealing at 350 °C revealed the nucleation of nanostructured tetragonal SnO2 phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hu, J.Q., Ma, X.L., Shang, N.G., Xie, Z.Y., Wong, N.B., Lee, C.S., and Lee, S.T.: Large-scale rapid oxidation synthesis of SnO2 nanoribbons. J. Phys. Chem. B 106, 3823 (2002).CrossRefGoogle Scholar
Watson, J.: The tin oxide gas sensor and its applications. Sens. Actuators, B 5, 29 (1984).Google Scholar
Arnold, M.S., Avouris, P., Pan, Z.W., and Wang, Z.L.: Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B 107, 659 (2003).Google Scholar
Chen, Y.J., Nie, L., Xue, X.Y., Wang, Y.G., and Wang, T.H.: Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity. Appl. Phys. Lett. 88, 083105 (2006).Google Scholar
Liu, L.Z., Wu, X.L., Xu, J.Q., Li, T.H., Shen, J.C., and Chu, P.K.: Oxygen-vacancy and depth-dependent violet double-peak photoluminescence from ultrathin cuboid SnO2 nanocrystals. Appl. Phys. Lett. 100, 121903 (2012).Google Scholar
Roco, M.C.: Nanoparticles and nanotechnology research. J. Nanopart. Res. 1, 1 (1999).Google Scholar
Kucheyev, O., Baumann, T.F., Sterne, P.A., Wang, Y.M., Buuren, T., and Hamza, A.V.: Surface electronic states in three-dimensional SnO2 nanostructures. Phys. Rev. B 72, 035404 (2005).Google Scholar
Leite, E.R., Weber, I.T., Longo, E., and Varela, J.A.: A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv. Mater. 12, 966 (2000).Google Scholar
Kiliç, C. and Zunger, A.: Origins of coexistence of conductivity and transparency in SnO2 . Phys. Rev. Lett. 88, 095501 (2002).CrossRefGoogle ScholarPubMed
Brovelli, S., Chiodini, A., Lauria, A., Meinardi, F., and Paleari, A.: Energy transfer to erbium ions from wide-band-gap SnO2 nanocrystals in silica. Phys. Rev. B 73, 073406 (2006).Google Scholar
Gleiter, H.: Materials with ultrafine microstructures: Retrospectives and perspectives. Nanostruct. Mater. 1, 1 (1992).Google Scholar
Lee, W. and Kwun, S.I.: The effects of process control agents on mechanical alloying mechanisms in the Ti-Al system. J. Alloys Compd. 240, 193 (1996).CrossRefGoogle Scholar
Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969).Google Scholar
Larson, C. and von Dreele, R.B.: GSAS Manual. Rep. Laur 86 (Los Alamos Nat. Lab., Los Alamos, 1988).Google Scholar
McCusker, L.B., Von Dreele, R.B., Cox, D.E., Louër, D., and Scardi, P.: Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36 (1999).Google Scholar
Inorganic Crystal Structure Database (ICSD): Gmelin-Institut für Anorganische Chemie and Fachinformationszentrum FIZ Karlsruhe, 1995.Google Scholar
Joint Committee on Powder Diffraction Standards: JCPDS—Powder Diffraction File Search Manual, X-ray Index Cards, 11-0065 (International Center for Diffraction Data, Philadelphia, PA, 1994).Google Scholar
Gialanella, S., Deflorian, F., Girardi, F., Lonardelli, I., and Rossi, S.: Kinetics and microstructural aspects of the allotropic transition in tin. J. Alloys Compd. 474, 134 (2009).CrossRefGoogle Scholar
Chookajorn, T., Murdoch, H.A., and Schuh, C.A.: Design of stable nanocrystalline alloys. Science 337, 951 (2012).Google Scholar
Poffo, C.M., de Lima, J.C., Souza, S.M., Trichês, D.M., Grandi, T.A., and de Biasi, R.S.: Structural, thermal and optical study of nanocrystalline silicon produced by ball milling. J. Raman Spectrosc. 41, 1606 (2010).Google Scholar
Suryanarayana, C.: Recent developments in mechanical alloying. Rev. Adv. Mater. Sci. 18, 203 (2008).Google Scholar
Muktepavela, F., Vasylyev, M., Czerwinski, A., and Rogulski, Z.: Investigation of hydrogen embrittlement of Sn–Al alloy during contact with water. J. Solid State Electrochem. 7, 83 (2003).Google Scholar
Samsonov, G.V.: Handbook of the Properties of Elements, Part II, edited by G.V. Samsonov (Metallurgiya, Moscow, Russia, 1976).Google Scholar
Rachek, O.P.: X-ray diffraction study of amorphous alloys Al–Ni–Ce–Sc with using Ehrenfest’s formula. J. Non-Cryst. Solids 352, 3781 (2006).Google Scholar
Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y., and Miyasaka, T.: Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 276, 1395 (1997).Google Scholar
Strand, Z.: Glass ceramic material. Glass Sci. Technol. 8, 185 (1986).Google Scholar
Hotta, S., Matsumoto, K., Murakami, T., Narushima, T., and Ouchi, C.: Dynamic and static restoration behaviors of pure lead and tin in the ambient temperature range. Mater. Trans., JIM 48, 2665 (2007).Google Scholar
Hansen, M.: Constitution of Binary Alloys (McGraw-Hill, New York, 1958).Google Scholar
TAPP version 2.2, E. S. Microwave Inc., Wade Court, Hamilton, OH.Google Scholar
Legendre, F., Poissonnet, S., and Bonnaillie, P.: Synthesis of nanostructured SnO2 materials by reactive ball-milling. J. Alloys Compd. 434435, 400 (2007).Google Scholar
Lamelas, F.J.: Formation of orthorhombic tin dioxide from mechanically milled monoxide powders. J. Appl. Phys. 96, 6195 (2004).Google Scholar
Cukrov, L.M., Tsuzuki, T., and McCormick, P.G.: SnO2 nanoparticles prepared by mechanochemical processing. Scr. Mater. 44, 1787 (2001).CrossRefGoogle Scholar
Gracia, L., Beltrán, A., and Andrés, J.: Characterization of the high-pressure structures and phase transformations in SnO2. A density functional theory study. J. Phys. Chem. B 111, 6479 (2007).Google Scholar